Horizon Scanning

© Fraunhofer ISI
Horizon Scanning Process

When signals of change persist over time, they may establish a new medium- to long-term trend or megatrend or alter existing trends.

Horizon Scanning involves methods to detect signals of emerging changes early on and assess their relevance for current issues, goals, or strategic decisions. It encompasses three steps: scoping to delineate or define the search space and relevant sources, the actual scanning, which can also be AI-based depending on the scope, and the sensemaking step for evaluating and prioritizing the identified signals. The process steps ensure that Horizon Scanning converges into strategically relevant information.

Key elements of our Horizon Scanning include:

  • Collaboratively delimiting the search space with our client.
  • Selecting and assembling the methodology, particularly combining semi-automated and expert-based source identification and analysis to ensure the quality and legitimacy of results.
  • Addressing perception filters and judgment biases in the choice of methods and sources based on our De-Biasing approach.
  • Leveraging so-called fringe sources, i.e., sources not yet established in the respective context, and employing creative anticipation methods involving stakeholders and experts from adjacent knowledge areas.

  • Erdmann, Lorenz; Kimpeler, Simone; Gutknecht, Ralph; Cuhls, Kerstin; Rörden, Jan (2023): UEnvironmental research and governance in the digital age. Ed. Umweltbundesamt (UBA), Dessau-Roßlau. http://www.umweltbundesamt.de/publikationen
  • Haan, Philipp; Berbig, Manuel; Blum, Ralph; Rörden, Jan; Schirrmeister, Elna; Zimmermann, Roland (2023): Mehrstufige Strategische Frühaufklärung durch Iterative Automatisierte Themenerkennung und Fusion von Nachrichten-, Journal- und Patenttexten mittels Natural Language Processing (NLP). In: 17. Symposium für Vorausschau und Technologieplanung, Berlin, Germany, 14. September 2023. https://www.doi.org/10.24406/h-452214
  • Geurts, Amber; Gutknecht, Ralph; Warnke, Philine; Goetheer, Arjen; Schirrmeister, Elna; Bakker, Babette; Meissner, Svetlana (2021): New perspectives for data‐supported foresight: The hybrid AI‐expert approach, Zeitschriftenaufsatz in Futures & foresight science, Art. e99. https://doi.org/10.1002/ffo2.99
  • Schirrmeister, Elna; Göhring, Anne-Louise; Warnke, Philine (2020): Psychological Biases and Heuristics in the Context of Foresight and Scenario Processes. In: Futures & Foresight Science (2020). https://doi.org/10.1002/ffo2.31
  • Warnke, Philine; Schirrmeister, Elna (2016): Small Seeds for Grand Challenges — Exploring Disregarded Seeds of Change in a Foresight Process for RTI Policy. In: Futures 77 (2016), pp. 1-10. http://dx.doi.org/10.1016/j.futures.2015.12.001