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Abstract 

This paper explores factors driving innovation in wind power technologies in 

OECD countries by employing count data panel econometrics. Transnational 

patent data in wind power technologies serve as the indicator for innovation. In 

addition to classical supply side policies, the set of explanatory variables also 

reflects insights from the systems of innovation and policy analysis literature. 

The findings suggest that patenting is positively related to public R&D in wind 

power (reflecting supply side regulation), to the stock of wind capacity (learning 

effects), to the number of patents per capita (innovation capacity), to the share 

of Green party voters (legitimacy of technology), to targets for electricity from 

renewable energy sources, to the stability of the regulatory framework, and also 

to power prices (profitability). Feed-in-tariffs, which have been the predominant 

support mechanism for electricity from renewables, are not found to be posi-

tively related to patenting activity – unless they are implemented within a stable 

regulatory framework. These findings are robust to alternative model specifica-

tions and distributional assumptions. 

Keywords: Innovation; supply-side regulation; demand-side regulation; wind 

power; patent analysis; count data econometrics; 

Highlights 

• Patenting in wind power is positively related to supply-side and demand-

side policy  

• Patenting is positively related to innovation capacity and technology le-

gitimacy  

• Patenting is positively related to target setting and a stable regulatory 

framework 

• Feed-in-tariffs spur innovation in a stable policy environment only 
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1 Introduction 

Expanding renewable energy sources (RES) is considered to be a key strategy 

for tackling climate change, preserving resources, and securing energy supply. 

As a key component of decarbonising their power sectors, several countries, 

including Denmark, France and Germany, have recently passed “energy transi-

tion laws”, which mandate a sharp increase in RES over the next two to three 

decades. To achieve these targets at low cost, innovation efforts are needed to 

help increase performance and lower the costs of electricity generation from 

RES.  

Policy support for innovation in RES technologies is typically justified by positive 

technology and knowledge spillovers and by RES’s avoidance of external costs 

associated with the generation of electricity from conventional sources. Thus, in 

the absence of policy intervention, private innovation activities would be lower 

than socially desired. The importance of public policy in spurring environmental 

innovation (including RES innovations) has long been recognized (e.g. Ren-

nings, 2000), and more recent work calls for innovation and environmental poli-

cies to be investigated jointly (e.g. del Río, 2009; Newell, 2010, Horbach et al., 

2012; Costantini and Crespi, 2013; and del Río and Peñasco 2014).  

To date, there is only scant empirical literature analysing the impact of policies 

on innovation in RES power technologies based on large samples. Notably, 

Johnstone et al. (2010), econometrically explore the effects of technology-

specific expenditures on research and development (R&D) and of support 

mechanisms for electricity from RES on patenting activity in OECD countries 

between 1978 and 2003. Thus, apart from including various support mecha-

nisms, the set of policies considered is rather narrow and does not reflect other 

policy factors which may impact patenting. In particular, the systems of innova-

tion literature stresses the importance of innovation functions which have to be 

fulfilled, such as knowledge creation and exchange, entrepreneurial activities, 

guidance of search, early market formation, and legitimacy of technology (e.g. 

Smits and Kuhlmann, 2004; Bergek et al., 2008a; Heckert and Negro, 2009). In 

addition, the policy analysis literature points to the role of target setting and pol-

icy stability for innovation activities (e.g. Jänecke and Lindemann, 2010; Bergek 

et al, 2008a). Yet, the impact of these broader effects on innovation activities in 

RES power technologies has only been explored using case studies, which al-
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low findings to be generalized in an analytical sense but not in a statistical 

sense. 

In this paper, we econometrically analyse factors driving patenting activity in 

wind energy technologies, relying on data for 12 OECD countries over the time 

span of 1991 to 2011. In addition to traditional supply-side policies such as 

technology-specific R&D and demand-side policies such as support mecha-

nisms for electricity generated by RES, we also include factors derived from the 

systems of innovation and the policy analysis literatures. We focus on wind en-

ergy because wind power is typically considered to exhibit the largest future 

potential among RES power technologies (IEA 2014). Compared to previous 

analyses our sample captures the more recent and also more dynamic devel-

opments in wind power patenting. 

The remainder of the paper is organized as follows. Section 2 describes the 

concepts and previous work. Section 3 provides an overview of wind power as a 

case. Section 4 presents the methodology, including a description of the data, 

the variables used in the empirical analysis, and the econometric approach. Re-

sults are presented and discussed in section 5. The final section summarizes 

the main findings and offers policy implications. 

2 Concepts and previous work 

Conceptually, the literature typically distinguishes between supply-side (alias 

supply-push or technology-push) policy instruments and demand-side (alias 

demand-pull or market-pull) policy instruments. Supply side regulation attempts 

to affect the innovation process per se, contributes to the creation and devel-

opment of knowledge and supplies resources for the development of new tech-

nologies. Traditional supply side policies include technology-specific measures 

such as subsidies for R&D for particular technologies, cross-cutting policies 

such as protection of intellectual property rights, and the standardisation of 

products and processes via technology norms (e.g. Blind, 2008). 

In comparison, demand-side policies enable market formation, which indirectly 

leads to the supply of resources, exchange of information, and market growth, 

facilitating user-producer interactions and learning (e.g. Edler and Georghiou, 

2007). Demand-side instruments for RES include measures supporting deploy-

ment, such as feed-in-tariffs (FITs), which involve fixed payments to electricity 

generators for each kWh of electricity supplied from RES. Other support 

mechanisms include investment subsidies or tax exemptions, production tax 
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credits (PTC), quota obligations for the share of RES electricity generated or 

distributed, and tradable green certificate (TGC) schemes. Consequentially, the 

level of support for innovation may be determined administratively or by market 

forces. By creating sufficient demand these mechanisms help establish markets 

for high-cost RES technologies and help overcome the technological lock-in into 

fossil fuel technologies in the energy sector (Unruh, 2002). Most theoretical and 

empirical studies consider market-based support mechanisms such as TGCs, 

FITs or PTCs to have stronger effects on innovation than command and control 

instruments like non-tradable obligations, since the latter provide lower financial 

incentive to advance technologies beyond the required standard (e.g. Jaffe et 

al. 1999). The thrust of the literature further suggests that FITs are more condu-

cive to innovation than TGC because they provide more predictable price incen-

tives for investors (e.g. Schmidt et al. 2012, Bergek and Berggren 2014). Such 

investment security is particularly relevant for technologies like wind power, 

where capital costs account for a high share of total generation costs1. System-

atically reviewing the empirical literature on national RES support policies, del 

Río and Peñasco (2014) conclude that FITs are the most appropriate promotion 

instrument to spur innovation and early diffusion in RES for electricity genera-

tion. Recent conceptual and empirical work suggests that the innovation effects 

of support measures are not just driven by the type of measure and the support 

level (e.g. Davies and Diaz-Rainey 2011), but also by particular design features 

of the measures: the duration of support, decline of support levels over time, the 

quantitative limits for installed capacities (e.g. in GW per year), or the differenti-

ations made intra-technology (e.g. by size, specific technologies used, location) 

(e.g. del Río, 2012; Hoppmann et al. 2013). For photovoltaics, Hoppmann et al. 

(2013) further conclude that policy-induced market growth increases innovation 

activities in companies.  

The systems of innovation (SI) and the policy analysis literatures bring in policy 

factors which complement these traditional supply and demand side impacts or 

policy. More specifically, SI stresses the importance of learning, of a country’s 

innovative capacity, and of technology legitimacy on innovation. Accordingly, 

learning-by-doing, learning-by-using, or learning by-interacting (user-producer 

interaction) lead to innovations such as patenting of new products and proc-

esses (e.g. Smits and Kuhlmann 2004). Likewise, a country’s higher scientific 

and technological know-how nurture innovation activities by companies (e.g. 

                                            

1 Capital costs account for about 80% of the levelized costs of wind power generation 
(IRENA, 2012). 
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Nelson 1993). Finally, a higher perceived legitimacy of technology translates 

into higher market success of a new technological paradigm. Similarly, the 

greater potential and performance ascribed to a technology facilitates legitimacy 

and increases further innovation activities (Bergek et al. 2008b). A second as-

pect of legitimacy relates to the power to change existing rules and institutions, 

e.g. via the ability to influence public policy (Hekkert and Negro, 2009) and to 

challenge existing technological regimes (Walz and Köhler 2014). Providing 

investment security and stability, enhancing the legitimacy of technology, offer-

ing search guidance, and offering a long-term perspective for investment priority 

setting are key functions of an innovation system (e.g. Smits and Kuhlmann 

2004, del Río and Bleda 2012, Bergek and Berggren 2014).  

The policy analysis literature notes that target setting and the stability of the 

regulatory framework affect innovation in RES (e.g. Jänicke and Lindemann 

2010, Bergek et al., 2008a).2 Enacting policy targets and ensuring a stable 

regulatory framework are likely to support the functions of an innovation system 

such as guiding innovative search processes and promulgating the legitimacy of 

RES on innovation. Likewise, the emerging policy mix literature stresses the 

need to broaden our collective perspective and go beyond merely analyzing the 

features of single policy instruments (Rogge and Reichardt, 2013). Existing 

analyses, however, rely almost exclusively on case studies. 

The few econometric studies exploring the impact of public policies on innova-

tion activities in technologies for RES employ country-level panel data, and use 

patent counts over time as indicators for innovation activity. Johnstone et al. 

(2010) focuses on the effects of different support mechanisms by drawing on 

data for five RES (wind, solar, geothermal, ocean, and biomass plus waste) in 

25 OECD countries between 1978 and 2003. They find that FITs are positively 

related to patenting activity in high-cost technologies used in RES (i.e. solar), 

but, somewhat surprisingly, not for more cost-competitive technologies. In fact, 

for wind power technologies the coefficient associated with the FIT policy vari-

able is, statistically, significantly negative. For most specifications though, pat-

enting is not related to the support levels per se, but rather to whether a policy 

is simply in place or not. In addition, Johnstone et al. (2010) find that public 

R&D expenditures exhibit a positive effect on patenting in wind- and solar-

power technologies. Since they observe a statistically significant positive rela-

                                            

2  The impact of regulatory uncertainty on firms’ innovation activity has also been explored in 
the  management literature, e.g. (Marcus 1981, 2013). 
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tion between power prices and patenting for solar technologies only, but not for 

other RES, they conclude that policies rather than power prices are driving in-

novation activity. 

Costantini et al. (2015) draw on data from 36 OECD and non-OECD countries 

between 1990 and 2010 to analyse the factors driving patenting activity in bio-

fuel-related technologies. They find that patenting in biofuel technologies is 

positively related to public R&D expenditures and to the innovative capacity of a 

country. Distinguishing between mature and less-mature biofuel technologies, 

Costantini et al. (2015) further find patenting activity for the former to be mainly 

related to demand-side policies. In comparison, patenting activity for less-

mature technologies is related to both supply-side and demand-side policies.  

Johnstone et al. (2010) and Costantini et al. (2015) both focus on the effects of 

the different types of support mechanisms, particularly on whether FITs are 

conducive to innovation activities for energy technologies in RES. In compari-

son, the impact of other demand-side factors has only been explored in case 

studies, where identification of the effects turned out to be difficult (e.g. Hekkert 

and Negro 2009). The majority of empirical studies explore the effect of support 

systems on deployment of RES rather than on innovation activity, e.g. Polzin et 

al. (2015) or del Río and Peñasco (2014).  

Like Johnstone et al. (2010), our empirical analysis focuses on technologies for 

RES in the power sector and includes R&D expenditures as a standard supply-

side policy, and allows for differences in support mechanisms. Similar to Co-

stantini et al. (2015), we also allow for learning effects. In addition, and com-

plementary to the case-study analyses relying on the systems of innovation and 

policy studies frameworks, our empirical model accounts for the effects of tech-

nological legitimacy, target setting and the stability of the regulatory framework 

on innovation. While information on the support mechanisms is less detailed 

than in Johnstone et al. (2010) or Costantini et al. (2015), our specification in-

cludes a broader set of explanatory and control variables and also allows sup-

port mechanisms to interact with the stability of the regulatory framework.  

3 The case of wind power 

Wind energy plays an important role for decarbonising the electricity sector 

around the globe. According to GWEC (2014) about 370 GW of wind power had 

been installed by the end of 2014 globally. Asia leads in terms of cumulative 

installations, with 142 GW, followed by Europe and North America, with 134 
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GW and 78 GW respectively. Initially (until about 2006) the development of wind 

power was driven by European countries, particularly Denmark and, later, Ger-

many and Spain. The markets in Asia have developed very dynamically in re-

cent years, with an annual installed capacity of 26 GW in 2014. In Europe ca-

pacity growth has stabilized at about 11 - 13 GW per year; in North America the 

annually installed capacity has varied between 3 and 15 GW per year during the 

last three years. About 98% of the globally installed wind capacity is onshore 

wind. Only about 7 GW of offshore wind capacity had been constructed in 2013. 

Europe dominates the offshore wind market; only about 480 MW offshore wind 

was installed in Asia in 2013.  

All large markets are strongly policy driven. The types and design of the support 

mechanisms differ across countries and within countries over time.3 For exam-

ple, the US has traditionally implemented federal PTCs for power generated 

from certain RES (including wind). In addition, several US states have renew-

able portfolio standards in place. But the yearly expiration and hesitant re-

extension of the PTC has led to a stop-and-go investment cycle. In Europe wind 

energy was initially driven by feed-in tariffs introduced at the member-state 

level, e.g. in Denmark, France, Germany, Portugal and Spain. Some countries, 

including Belgium, Poland, Sweden and the UK, primarily relied on TGCs based 

on quota obligations. For power generated from RES, Germany replaced its 

technology-neutral power purchase agreements with a technology-specific FIT 

in 2000. This FIT specified a fixed remuneration level for 20 years (in addition to 

the year when the plant starts operating). Since then, FITs have become the 

dominant support system in most industrialized countries, as well as in many 

emerging and developing countries including China and India. Across countries 

design features differ. For example, Spain’s FIT, in place from 1997 until it was 

terminated in 2012 in the aftermath of the financial crisis, fixed the remuneration 

period for only 5 years. Several countries have switched support systems over 

time, primarily from FIT and TGC to feed-in premium (FIP) systems. For exam-

ple, Germany, Italy, the Netherlands and the UK introduced FIPs during recent 

years in order to increase the compatibility of their support scheme with the 

overall electricity market. Under a FIP, electricity producers receive a premium 

on top of the wholesale market price of electricity. To prevent under- and over-

compensation, FIPs are typically combined with predetermined price floors and 

caps or minimum and maximum levels of total remuneration. Alternatively, float-

                                            

3 For further details we refer to the IEA ‘Renewable Energy Policies and Measures Data-
base’ (http://www.iea.org/policiesandmeasures/renewableenergy/). 
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ing FIPs are also commonly used. Here, the total remuneration is fixed (at a 

“strike price”) if a predefined benchmark for market revenues is reached. Thus, 

FIPs provide similar incentives as FITs. In early 2014, the EU adopted the new 

“Environmental and Energy State Aid Guidelines for 2014-2020”, effectively 

making FIPs that are based on bidding systems the central support instrument 

for renewable power in the future. It also bans feed-in tariffs for most situations. 

Policies that reduce long term revenue risks are considered to be particularly 

suited to support capital-intensive technologies like wind energy (e.g. Kleßmann 

et al 2013). Therefore, many EU member states currently consider the introduc-

tion of auctions to determine support levels replacing the current administrative 

procedure. In the key Asian markets, including China and India, tender-based 

feed-in tariffs are the dominating policy instruments. 

During the last three decades, wind-energy technology has progressed sub-

stantially, resulting in substantial cost reductions. For example, estimating learn-

ing curves for wind technologies between 1981 and 2004, Nemet (2009) finds a 

progress ratio of 89%. Innovation and technological development is mainly 

driven by technology providers. During the last two decades the capacity of a 

standard turbine increased by a factor of ten. This cost reduction was driven 

mainly by economies of scale; development of new technology concepts and 

materials; and standardisation and automation of manufacturing processes.  

4 Methodology 

We employ panel econometrics to estimate the impact of policy on patenting 

activity, relying on a time series (1991 to 2011) of cross-sectional data for 

twelve OECD countries: Austria (AT), Denmark (DK), France (FR), Germany 

(DE), Italy (IT), Japan (JP), the Netherlands (NE), Spain (SP), Sweden (SE), 

Switzerland (CH), the United Kingdom (UK) and the United States (US). Coun-

try choice was mainly motivated by their importance for patenting in wind power 

technologies during the period considered, as well as data availability. The 

countries included in our sample account for 75 to 90 percent of total annual 

global wind power patents in any given year. Of the countries which have very 

recently become more relevant for wind power patenting, only China and Korea 

are missing from our sample. 



8  

 

4.1 Dependent variable 

We use the number of patents for wind power technology (patents) as the de-

pendent variable. Despite several empirical and conceptual caveats (e.g. 

Griliches, 1990), patents have been widely used as an indicator for innovation in 

quantitative empirical studies in the environment and innovation domain (e.g. 

Lanjouw and Mody, 1996; Brunnermeier and Cohen, 2003; Johnstone et al., 

2010; Costantini et al., 2015). 

Among renewable energy technologies, wind power technologies are particu-

larly well classified: they form the patent sub-class F03D. This sub-class relates 

to the main focus of wind power plants such as motors, masts and rotors, but 

does not cover the electrical power generation or distribution aspects of wind 

power plants. Likewise, auxiliary technologies which are relevant for off-shore 

wind energy, such as marine vessels for erecting off-shore turbines or founda-

tions for water towers, are not included. They are parts of other patent sub-

classes which are more likely to be also triggered by developments outside 

wind energy development. Furthermore, off-shore wind energy has become 

prominent only recently and was much less prevalent during the time horizon 

analysed in this paper.  

The patent data refers to patent applications and country assignment based on 

the country in which the inventor lives rather than the location of the headquar-

ter of the company filing the patent. Thus, the data is more likely to indicate the 

country in which the new knowledge has been acquired. Patent data is collected 

relying on the transnational patent approach described by Frietsch and 

Schmoch (2010).4 Accordingly, we count all patent applications filed under the 

Patent Cooperation Treaty (PCT), independent of whether they are transferred 

to EPO or not. Furthermore, we take EPO applications into account. However, 

in order to avoid double counting, we only count the direct EPO applications 

                                            

4 In general the choice of patent offices from which patent applications are taken matters. 
Since patents are also a means to protect markets, there is a country bias in favor of do-
mestic applicants. To address this country bias, the triadic patent approach was developed 
in the 1990s. This approach only considers patents which are simultaneously applied for at 
the EPO, USPTO and JPO. As a drawback, however, the triadic approach would not allow 
analyzing patent applications before 2001, since until then the USPTO only published data 
for patents granted, i.e. not for all patents applied. In addition, for countries other than Ja-
pan, the outcome under the triadic approach is de facto defined by the application at the 
JPO. In light of the low relevance of Japan as a destination of wind turbine exports for the 
period covered in this study, relying on the triadic patent approach does not appear appro-
priate in the context of this paper.  
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without precursor PCT application. Thus, all patent families with at least a PCT 

application or an EPO application are taken into account. After testing and 

comparing different approaches, Frietsch and Schmoch (2010) conclude that 

this transnational approach provides larger samples than the Triadic approach 

for the analysis of specific fields and is highly capable of grasping the relations 

between different countries reliably. The available data was retrieved from the 

Questel database (www.questel.com) and covers the period from 1991 to 2011. 

For this time period, 6527 patents were identified. The data indicate a strong 

increase in total patenting of wind power technologies between 1991 and 2011 

(see Figure 1 and also Annex Table A1). Until 1998 patenting activity was rela-

tively low. It then started to increase in a few countries, namely in the US, Den-

mark, and Germany. After 2005, patenting activity climbed strongly in these 

countries, as well as in Japan, the UK, and Spain. In sum, patenting activity in-

creased in all twelve countries since the early 1990s, but the levels and the de-

velopment of patents differs across countries. 

Figure 1:  Annual transnational patents in wind power technology for  
12 OECD countries 
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4.2 Explanatory variables 

Reflecting supply-side policy, we include public R&D expenditures for wind 

power including onshore and offshore technologies and wind energy systems 

and other technologies (r&d) (see Table 2). As is typically the case, private R&D 

expenditures for wind power technologies could not be included for lack of 

data.5  

To capture demand-side policy effects, we include a dummy variable, FIT, 

which takes on the value of one if a FIT was in place in a specific year.6 Simi-

larly, we include the dummy variable NOFIT, which is equal to one if other-than-

FIT support mechanisms were implemented. FIT and NOFIT only capture dif-

ferences in the types of support mechanisms, but not in the support levels.7 We 

further include the export volume of wind power technologies (export) which is 

meant to roughly capture the impact of export demand (e.g. via foreign support 

mechanisms) on domestic patent activity. Similar to Costantini et al. (2015), 

learning effects are captured by the cumulative capacity of wind power installed 

in a particular country (windcap). Since the effects of the capacity installed in a 

particular year are likely to fade over time, we follow the empirical literature on 

the depreciation rate of knowledge stock and apply an annual decay rate to the 

capital stock. We use a rate of 10 percent, which is in the range of rates typical-

ly employed for the depreciation of the knowledge stock. Similar to Costantini et 

al. (2015), we include the number of total patents (net of patents for RES) per 

capita (patents_all_pc) to proxy a country’s innovative capacity.  

Empirically, legitimacy of technology has been analyzed via case studies by 

looking at rise of growth of interest groups, extent of lobbying activities, and de-

bate in parliament and media (Bergek et al. 2008a; Hekkert and Negro 2009). 

There is no single indicator available which covers all of these aspects across 

countries over time. As a proxy for legitimacy of technology we include the 

share of votes for green parties at national level during the most recent election 

                                            

5 To the extent that private R&D efforts are correlated with explanatory variables in the mod-
el, the estimated coefficients may suffer from an omitted variable bias. 

6 FIT also equals one, if a FIP was in place in Spain (from 2007 on) or Denmark (from 2009 
on), since the incentives of these FIPs for investors are similar to those of FITs. For similar 
reasons, FIT was set to one when a PTC was in place in the US.  

7 Similar to Johnstone et al. (2010), we abstract from the fact that policies may be imple-
mented or adjusted in response to patenting activity (e.g. Downing and White 1986). Policy 
endogeneity is difficult to address in the given context, in particular since there is not much 
variation in the support schemes.  
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(greenvote)8. To be considered a green party, it had to be a member of the 

Global Green, the European Green Party or the parliamentary group of the 

Greens in the European Parliament.  

To further capture factors of innovation identified in the policy analysis literature, 

we construct two variables (see also Annex Table A2). First, target takes the 

value of one of if a national target is in place for electricity generated from wind 

power or from renewable energies in general. For example, of the countries 

considered in our sample, Germany was the first to introduce targets for wind in 

1989, i.e. installing 250 MW between 1989 and 1996. The federal German Re-

newable Energy Act, which came into force in 2000 aimed at doubling electricity 

generated by RES until the year 2010. Similarly, in 1996 Japan implemented 

legislation aiming to have 3 GW of wind power installed by 2010. In 2003 Japan 

then introduced the target for 16 TWh to be generated by all RES in 2014. In 

the US, individual states had introduced renewable portfolio standards in the 

1990s. For the US, target was set to one, if states accounting for more than half 

the US population had targets in place. This was the case since 2004.  

Second, and more exploratively, we attempt to capture the impact of the stabil-

ity of the regulatory framework. To do so we construct stability, which equals 

one if there is a stable regulatory framework in place and a supportive regula-

tory framework exists (e.g. provisions for integration of power from RES into the 

grid, building codes, standards) and if there are information and education pro-

grams in place. For the US, for example, the short duration and fast changes in 

legislation led to a score of zero for most of the 1990s. The federal PTCs were 

extended several times for only two additional years, and by a narrow margin of 

votes (Bird et al., 2005). In the UK legislation governing wind energy started 

relatively late. A renewable obligation plan has existed since 2000 (updated in 

2002). In 2001 a climate change levy was introduced which is still in place. 

From 2002 on, when the offshore wind capital grants scheme and the renew-

able obligations were introduced (both are still in place), the regulatory frame-

work in the UK was judged to be stable.9 Denmark started to foster RES in the 

                                            

8 By choosing country-level measures to reflect legitimacy, we ignore that legitimacy may 
also materialize at the regional or local level, in particular for wind power (e,g. Spiess et al. 
2015). Detrimental effects of wind power at the local level may include noise disturbance or 
visual intrusion or visual impact on the landscape. On the benefit side, wind power may 
boost local employment.  

9 A detailed description of the country-specific assessment and the sources used is beyond 
the scope but is available from the authors upon request. 
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mid-1970s, passed the Electricity Supply Act in 1976 (still in place), imple-

mented technical certification scheme for the design, manufacture and installa-

tion of wind turbines during the 1980s, and passed the green tax package in 

1995. Stability of the regulatory framework in Denmark was deemed to be fur-

ther strengthened by the wind energy co-operative tax incentive of 1997 and the 

offshore wind agreement in 1998, among others. But, in the wake of liberaliza-

tion of the energy markets in the late 1990s and a change in government in 

2001, the regulatory framework became unstable. In particular, legislation was 

passed in 1999 foreseeing a switch from a FIT-type support system to a TGC 

system, with a transition period to 2005. In 2004, however, new legislation was 

passed which introduced FITs, a replacement scheme for on-shore wind tur-

bines (still in force), and a long term energy strategy. Since there was discretion 

on the side of the authors, when constructing stability, we did not include stabil-

ity in the baseline specification of the econometric model.  

4.3 Control variables 

We include the price of electricity (powerprice) to control for financial incentives 

to innovate. Since we use the price of end-users, powerprice may also capture 

the effect of support mechanisms for RES (policy-induced innovation). In partic-

ular, the remuneration for RES is often directly linked to the electricity price via 

a bonus which is paid to power generators of RES on top of the power price. 

Similarly, end users’ electricity prices may also include energy and environmen-

tal taxes or the price of greenhouse gas certificates (e.g. for EU allowances in 

the EU Emissions trading systems since 2005). In this sense powerprice also 

reflects the stringency of environmental regulation.  

Finally, we include the number of patents in technologies for RES (net of pat-

ents for wind power technologies) to control for changes in the propensity to 

patent in RES over time and across countries.10 To calculate patents_reg we 

use patents for solar energy (including photovoltaic and concentrated solar 

thermal power), ocean energy (including tidal and wave energy and salinity gra-

dient power), biofuels (including liquids, solids and biogases), geothermal (in-

                                            

10 Johnstone et al. (2010) use patents across all technologies (not just RES) as a control 
variable. Thus, our specification allows distinguishing between the general technological 
capacity of a country (patents_all_pc) and cyclical effects over time which are specific to 
the RES domain (patents_reg). 
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cluding hydrothermal and hot, dry rock resources), and hydroelectricity (includ-

ing large and small hydroelectricity).  

Table 1 provides an overview of the variables, references to the data sources 

and expected signs in the econometric analysis. The descriptive statistics ap-

pear in Table 2. 

 



 

 

Table 1: Definition of variables  

 
Definition 

Expected 
sign 

Data sources 

Dependent variable 
   

patents 
Number of international patents for wind 
technologies.  

Patent families with at least a PCT application or an EPO 
application; EPO and WIPO data, retrieved with Questel. 

Explanatory vari-
ables    

r&d 

Public R&D for wind power including 
onshore and offshore technologies and 
wind energy systems and other tech-
nologies (Group 32) (million $2013). 

+ 
IEA RDD online data service: 
http://www.iea.org/statistics/RDDonlinedataservice/ 

FIT 
Dummy, value of 1 if a FIT or FIP is im-
plemented. 

+ 
IEA/JRC Global Renewable Measures Database, data for 
instrument were taken primarily from European Renewable 
Energies Federation and the literature. 

NOFIT 
Dummy, value of 1 if another support 
measure aside from a FIT or a FIP is 
implemented.  

IEA/JRC Global Renewable Measures Database, data for 
instrument were taken primarily from European Renewable 
Energies Federation and the literature. 

export 
Export volume of wind power technolo-
gies (10e9 $2013). 

+ 
UN-COMTRADE for HS classification number 850231 “Elec-
tric generating sets and rotary converters - Wind-powered”. 

windcap  
Accumulated installed wind power capac-
ity (GW = 1,000 MW); decay rate of 10% 
p.a. is applied. 

+ Global Wind Energy Council Global Statistics. 

patents_all_pc 
Number of international patents (net of 
patents and patents_reg) per million in-
habitants. 

+ 
Patent families with at least a PCT application or an EPO 
application; EPO and WIPO data, retrieved with Questel.  



 

 

 
Definition 

Expected 
sign 

Data sources 

greenvote Share of votes of Green party (in %). + 

For EU member states, outcomes of the most recent Euro-
pean Parliament elections were used. For other countries 
and for EU MS prior to their joining the EU, data were taken 
from the elections of national parliaments. 

Control variables 
   

powerprice 
Electricity price for households ($ 
2013/MWh). 

+ IEA Energy Prices and Taxes Database. 

patents_reg 
Number of international patents for all 
renewable technologies (excluding wind).  

+ 
Patent families with at least a PCT application or an EPO 
application; EPO and WIPO data, retrieved with Questel. 
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Table 2: Descriptive statistics of dependent and explanatory variables 
(1991-2011) 

Variable Unit Obs. Mean SD Min Max 

patents count 252 25.90 49.94 0.00 284 

r&d  million $2013  250 13.81 20.23 0.19 197.21 

FIT dummy 252 0.47 0.50 0.00 1.00 

NOFIT dummy 252 0.24 0.43 0.00 1.00 

export 10e9 $2013 252 0.14 0.37 0.00 2.20 

windcap  GW 252 1.89 4.10 0.00 30.14 

patents_all_pc 
per million 
inhabitants 

252 204.19 132.57 8.34 651.29 

greenvote percent 252 4.27 3.51 0.00 13.04 

target dummy 252 0.62 0.49 0.00 1.00 

stability dummy 252 0.51 0.50 0.00 1.00 

powerprice 
US 
2013$/MWh 

252 190.11 54.89 94.20 387.88 

patents_reg count 252 89.24 165.89 0.00 1061 

 

4.4 Econometric model 

To analyse the factors driving innovation activity in wind power technologies we 

employ a similar panel econometrics model as Johnstone et al. (2010) or Co-

stantini et al. (2015):  

tiititititi

tititi

tititititi

regpatentspowerpricestabilitytarget

greenvotepcallpatentswindcap

exportNOFITFITdrconstantpatents

,,111,101,91,8

1,7,61,5

1,41,31,21,1,

_

__

&)1(

εαββββ

βββ

ββββ

++++++

+++

++++=

−−−

−−

−−−−

 

where i = 1,...,12 indexes the cross-sectional units (countries) and t = 1991,..., 

2011 indexes time; iα  represents an unobserved country-specific effect (unob-

served heterogeneity), and ti,ε  is the usual idiosyncratic error term. In the esti-

mated specification, most explanatory variables enter with a lag of one period 

recognizing that companies take time to mobilize the resources to respond to 
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policy and market factors.11 Since patents_regl is supposed to control for gen-

eral trends in the propensity to patent for renewables, it is not lagged. Lagging 

explanatory variables is also expected reduce potential endogeneity problems 

related to the policy variables.  

As is common in patent analysis (Hausman et al., 1984; Hall et al., 1986; 

Johnstone et al., 2010; Costantini et al. 2015), we use a negative binomial 

specification to reflect the count nature of the dependent variable (the number 

of patents). Unlike a Poisson model, which is also frequently applied in patent 

analyses, the negative binomial model does not assume that the conditional 

mean is equal to the conditional variance (equidispersion).12 Inappropriate use 

of the Poisson model means that standard errors and p-values are too low, thus 

overstating the significance of the parameters.  

Compared to a purely cross-sectional analysis, a panel analysis allows for more 

general heterogeneity across countries. In particular, omitted country character-

istics which affect a country’s propensity to patent and which are correlated with 

other regressors do not result in inconsistent parameter estimates in panel data 

models as long as these unobserved effects (i.e. iα  in equation (1)) are roughly 

constant over the period in question. We allow for random effects and fixed ef-

fects panel models. In a random effects model (RE model), the dispersion pa-

rameter, which captures the extent to which the variance exceeds the mean, 

varies randomly across countries such that the inverse of the dispersion follows 

a Beta distribution (e.g. Hilbe, 2011). In the fixed effects model (FE model), the 

dispersion can take on any value. However, to estimate the parameters the 

fixed effects estimator only uses variation within countries (i.e. deviation of vari-

ables from country means). If unobserved effects are not correlated with ob-

served explanatory variables, then the RE model (i.e. treating unobserved ef-

fects as random) yields more efficient parameter estimates than the FE model 

that treats these effects as country specific. Parameter estimation in a RE 

model exploits the variation of variables within countries as well as variation 

between countries. But, if unobserved effects are correlated with observed ex-

                                            

11 Following, among others, Hall et al. (1986) and Costantini et al. (2015). In Johnstone et al. 
(2010) the explanatory variables entered without lags, implying that patenting activities re-
spond instantaneously to market and policy signals. We report the results of alternative lag 
structures in the section on robustness checks. 

12  The conditional probability function of the negative binomial models includes an additional 
term reflecting unobserved heterogeneity, which is assumed to follow a gamma distribu-
tion. 
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planatory variables, then the RE model yields inconsistent estimates. The FE 

model yields consistent estimates in both cases.  

In our estimations of equation (1), except for the dummy variables, greenvote 

and the count variables, all variables are transformed into the natural loga-

rithm.13 Thus, the coefficients for these variables may be interpreted as elastic-

ities while the coefficients for the dummy variables and for patentsall may be 

interpreted as semi-elasticities.  

5 Results 

STATA 13 was used to estimate the models. Table 3 displays the findings for 

the negative binomial fixed and random effects models.14 In general, the find-

ings hardly differ between the FE model 1 and the RE model 2 in terms of sig-

nificance levels and parameter values (for statistically significant parameters). 

As is often the case in practice, the fitted models failed to meet the asymptotic 

assumptions of a Hausman test. To be on the safe side, we use the FE model 

as the benchmark model and also for the interpretation of the findings.15  

The empirical findings in Table 3 support most of our predictions. More specifi-

cally, the coefficients associated with r&d, windcap, patents_all_pc, greenvote, 

target, and patents_reg exhibit the expected positive sign and are statistically 

significant at least at the 5% level. Unlike our predictions, though, export is not 

found to be statistically significant. This finding may be explained by the domi-

nant role of domestic markets in almost all countries. Before 2000, only Den-

mark exhibited significant exports in the order of magnitude of three-digit level 

of million $ dollars per year, amounting to roughly 90 % of world exports. Ger-

many was a distant second with a two-digit level of million $, or roughly 5 % of 

world trade share.  

                                            

13 Since the natural log of zero is not defined, we set the data to a small number (0.00001) 
when windcap or r&d was zero. This was the case for a total of 13 observations. Results 
were virtually the same if these observations were dropped. 

14  To assess whether collinearity may be a problem, variance inflation factors (VIF) were cal-
culated (by regressing patents on the set of explanatory variables in Table 3). The average 
VIF is 2.14 and all VIFs are below 3. In light of the standard cut-off point of 10, the vari-
ables do not appear to be highly inter-correlated. 

15 This also allows for a better comparison of the findings with Johnstone et al. (2010), who 
estimate a FE model only. Based on a Hausman test, Costantini et al. (2015) find the FE 
model to be more appropriate than the RE model. 
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In particular, and similar to Johnstone et al. (2010), FIT exhibits a negative sign, 

but is not statistically significant in our baseline specification. This finding is 

consistent with Johnstone et al. (2010), but for a more updated sample, which 

reflects the dynamic developments in wind power patenting in the past decade 

in numerous countries, and for different model specifications, which include a 

richer set of explanatory and control variables. In addition, the dummy em-

ployed to reflect the impact of FITs does not adequately capture design features 

which are relevant for patenting activities such as the duration or the level of 

support (the stringency), or digression in FIT rates. As in Johnstone et al. 

(2010), the coefficient for powerprice is positive and not statistically significant. 

Thus, at a general level, our results for the supply-side and demand-side factors 

of patenting in wind power technologies are qualitatively similar to those of Co-

stantini et al. (2015) for biofuels. 

Relying on the point estimates of the FE model suggests that an increase in 

public R&D for wind technologies by one percent is associated with, on aver-

age, about 2.5 more patents in the following year (0.0925*27.1616). Similarly, 

increasing the installed wind capacity by one percent changes the mean num-

ber of patents in wind technologies by about 3.6 in the following year. According 

to our findings, an increase in the share of green voters by one percentage 

point changes the mean number of patents by 5.8 percent (exp(0.0561)-1), i.e. 

by 1.6 patents. Finally, the existence of a wind energy target increases the 

mean number of patents by about 61 percent, i.e. by about 17 patents, com-

pared to countries with no target.  

Model (3) presents the findings when we add stability to the set of explanatory 

variables. As expected, the coefficient of stability is positive and significant 

(p<0.01). Adding stability to the model lowers the coefficient of windcap, in par-

ticular, while the other coefficients are hardly affected.  

Finally, we allow stability to interact with FIT and NOFIT. In this case, there are 

two effects. First, the negative main effect of FIT becomes statistically signifi-

cant (as in Johnstone 2010). Second, the findings for the interaction term (FIT x 

stability) suggest that feed-in-tariffs (compared to other or no support mecha-

                                            

16 27.16 is the mean patent count of the observations used in the analysis. This figure is 
slightly higher than the mean reported in Table 1 because lagging of explanatory variables 
implies that data on patents for 1991 is not used. Since patent activity in 1991 was lower 
than in subsequent years, the mean patent count increases if observations for 1991 are 
dropped. 
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nisms) are positively and statistically significantly related to patenting in wind 

technologies if they are implemented within a stable regulatory framework. 

Thus, FITs alone do not provide sufficient incentives for innovation, and may 

even be detrimental if embedded in an unstable regulatory framework such as 

the stop-and-go cycles in the US federal PTC or the frequent changes of the 

Dutch FIT support system. In comparison, the coefficient of NOFIT x stability is 

also positive but not statistically significant at conventional levels. In terms of 

model fit, we note that the values of the Bayesian Information Criterion (BIC) 

and Akaike Information Criterion (AIC) decrease, as we first include stability 

(model 3) and then in addition also the interaction terms (model 4). Hence, add-

ing these variables means a better fit of the data, even when accounting for dif-

ferences in the number of explanatory variables. 

Table 3: Results for negative binomial fixed and random effects models 
(standard errors in parentheses) 

 

Model (1) 

FE 

Model (2) 

RE 

Model (3) 

FE 

Model (4) 

FE 

r&d (t-1) 0.0925 ** 0.110 ** 0.135 *** 0.137 *** 

 
(0.0448)  (0.0446)  (0.0427)  (0.0400)  

FIT (t-1) -0.195  -0.222  -0.186  -0.708 *** 

 (0.171)  (0.167)  (0.157)  (0.183)  

NOFIT (t-1) 0.0293  0.00183  -0.137  -0.0521  

 (0.194)  (0.184)  (0.192)  (0.243)  

export(t-1) 0.00211  0.0139  0.00371  0.0107  

 (0.0219)  (0.0221)  (0.0214)  (0.0205)  

windcap(t-1) 0.133 *** 0.153 *** 0.0885 ** 0.107 *** 

 
(0.0356)  (0.0364)  (0.0346)  (0.0330)  

patents_all_pc (t-1) 0.674 *** 0.514 *** 0.507 *** 0.493 *** 

 (0.151)  (0.136)  (0.157)  (0.158)  

greenvote (t-1) 0.0561 ** 0.0393 * 0.0670 *** 0.0554 *** 

 
(0.0281)  (0.0278)  (0.0247)  (0.0205)  

target (t-1) 0.613 *** 0.653 *** 0.563 *** 0.694 *** 

 (0.137)  (0.137)  (0.129)  (0.128)  

stability (t-1)     0.714 *** 0.0296  

     (0.116)  (0.200)  

FIT x stability (t-1)       0.889 *** 

       (0.171)  
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Model (1) 

FE 

Model (2) 

RE 

Model (3) 

FE 

Model (4) 

FE 

NOFIT x stability (t-
1)  

 
 

 
 

 
0.362 

 

       (0.293)  

powerprice (t-1) 0.406  0.371  0.342  0.469 * 

 (0.308)  (0.280)  (0.287)  (0.264)  

patents_reg (t) 0.00203 *** 0.00202 *** 0.00187 *** 0.00164 *** 

 (0.000227)  (0.000212)  (0.000220)  (0.000211)  

constant 3.937 * 2.818  2.557  2.260  

 (2.317)  (2.021)  (2.209)  (2.192)  

         

Log likelihood -708.4  -791.0  -688.9  -673.0  

χ
2
 637.84 *** 658.89 *** 770.73 *** 947.61 *** 

AIC 1439  1608  1402  1374  

BIC 1477  1653  1444  1423  

Sample size 238  238  238  238  

* indicates individual significance in two-tailed t-test at p = 10 %; 

** indicates individual significance in two-tailed t-test at p = 5 %; 

*** indicates individual significance in two-tailed t-test at p = 1 % 

Robustness tests 

To verify the robustness of the results presented in Table 3, we tested a series 

of alternative specifications. First, we also estimated equation (1) using the 

Poisson specification. As was the case for the negative binomial models (model 

(1) and model (2)), the Poisson FE model results were quite similar to those of 

the Poisson RE model. In general, the findings from estimating models (1) to (4) 

using the Poission model were quite consistent with the findings for the negative 

binomial models. Unlike in the negative binomial models though, the coefficient 

FIT was positive and statistically significant in model (1) (at p<0.1). Likewise, 

the coefficient associated with NOFIT was negative and statistically significant 

at p<0.01 in models (1), (2) and (3). Most notably, the coefficient associated 

with export was positive and statistically significant at p<0.01 in model (1), (2) 

and (3) and at p<0.05 in model (4). In this sense, the results of the Poisson 

model are somewhat more in line with our predictions than the results of the 

negative binomial model. However, a standard likelihood-ratio test, provided 

evidence in favour of the negative binomial model against the Poisson model 

(χ2 (1) = 550.91, p = 0.00).  
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Second, the fixed effects estimator for negative binomial models, as developed 

by Hausman et al. (1984) and implemented in STATA, has been criticized for its 

lack of controlling for all stable covariates when maximizing the conditional like-

lihood (Allison and Waterman 2002, Greene, 2005). As suggested by Allison 

and Waterman (2002), we also estimated the unconditional FE negative bino-

mial model by including dummy variables for all countries, essentially relying on 

the familiar “dummy variable method” to estimate a fixed effects model. The 

results were very similar to those presented in Table (3). Qualitatively, notice-

able differences were found for FIT, which was not statistically significant in any 

of the models; for powerprice, which was found to be positively and statistically 

significantly related to patenting in all models; and for exports, which was posi-

tively and statistically significant in model (1) but not in any of the other models. 

In addition, employing the generalized Poisson model, which allows for under- 

and overdispersion, we qualitatively found very similar results as the uncondi-

tional FE negative binomial model.17   

Third, we also explored the effects of different lag structures for the explanatory 

variables. Lagging powerprice by two rather than one year renders powerprice 

statistically significant in all models, while the findings for the other variables 

were quite similar to those reported in Table 3. Similarly, lagging all explanatory 

variables by one more year than specified in equation (1) yielded quite similar 

results as those presented in Table (3). However, the coefficient associated with 

r&d and greenvote were no longer statistically significant.  

Finally, we used the stock of past patents in wind technologies rather than total 

patents per capita to reflect a country’s innovation capacity.18 Arguably, the 

former may more adequately reflect sector-specific effects such as wind tech-

nology suppliers’ learning by inventing. Since the effects of patents in the past 

are likely to fade over time, we depreciate the knowledge stock with a rate of 10 

percent. For this alternative specification, we found the knowledge stock to be 

positively related to patenting (p<0.01 for models (1), (2) and (3); p<0.1 for 

models (4)). The findings for the other variables for models (1) to (4) were virtu-

ally the same as those presented in Table 3, yet the BIC and AIC values were 

                                            

17  All results not shown to safe space are available from the authors. 

18  To capture capacity, Costantini et al. (2015) also consider the stock of past patents of their 
dependent variable, yet also prefer a specification with total patents per capita based on 
the Bayesian information criteria (BIC). 
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somewhat higher, thus supporting the use of total patents per capita rather than 

the stock of past patents in wind technologies. 

6 Conclusions  

Our econometric analysis of international patents in wind power technologies 

using a panel of twelve OECD countries over the last two decades supported 

the predictions that innovation is related to standard supply-side and demand-

side policies, and also to broader factors shaping innovation which were derived 

from the systems of innovation and the policy analysis literature. These findings 

were robust to alternative model specifications and distributional assumptions.  

More specifically, and similar to the scant empirical literature on innovation in 

RES technologies, we found patenting activity to be positively correlated with 

specific public R&D spending and with learning-by-doing (as proxied by the 

stock of wind power capacity). Unlike predicted though, export demand did not 

exhibit a statistically significant effect on patenting activity in most models esti-

mated. Arguably, in light of the ongoing globalisation of renewable technology 

markets, foreign demand pull factors will become more relevant for domestic 

innovation in RES technologies in the future. In contrast to some case study 

analyses, yet consistent with the previous econometric work, the presence of 

FIT was not associated with stronger patenting activity for the standard model 

specification. Arguably, the data employed on instruments in our analysis was 

not able to capture this important aspect. In particular, as Bergek and Berggren 

(2014) point out, an instrument’s impact also depends on the level of stringency 

and other design features such as duration of support or digression of support 

levels over time. 

Notably though, extending the extant literature to more explicitly and more com-

prehensively account for insights from the systems of innovation and policy 

analysis literatures, our study complements the results from case studies and 

allows for additional insights. In particular, we found patenting activities in wind 

power to be positively related to a country’s innovation capacity (either meas-

ured as patents per capita or as stock of past patents in wind technologies), to 

legitimacy of technology (as proxied by the share of Green party votes), and to 

the presence of production or capacity targets for wind power or electricity from 

RES in general.  

We further observed that a more stable policy environment is favourable for 

patenting wind technologies. Interestingly, by allowing the FIT and NOFIT sup-
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port mechanisms to interact with the stability of the regulatory framework, we 

discovered a positive and statistically significant correlation of this interaction 

term for FITs. Thus, the support mechanisms are conducive to patenting (only) 

when the regulatory environment is stable. While this analysis was rather ex-

ploratory and the indicator employed is likely a rather crude proxy for policy sta-

bility, future analyses could also explore in greater detail the impact of the policy 

mix on innovation activities in renewable power technologies. For example, fu-

ture work could include more explicit indicators reflecting market regulation (e.g. 

conditions for access to the grid for electricity from renewables) or the availabil-

ity and quality of the grid infrastructure. Such indicators may also capture the 

implications of permitting and planning procedures (duration, costs), zoning 

laws, and environmental legislation (restrictions on land use). The latter is par-

ticularly relevant not only for wind power technologies but also for other renew-

able technologies such as free-standing solar plants or hydropower. Future em-

pirical work may also model the dynamic nature of innovation systems and their 

differential impact on innovation, thus capturing leader-follower relations across 

countries (e.g. Bento and Fontes 2015). 

Electricity prices were also positively related to patenting in wind power, in par-

ticular when lagged by two rather than one year. Thus, it may take firms longer 

than implied in the extant literature to respond to power prices and to mobilize 

the resources leading to new patents. Finally, we found that the patenting of 

wind power technologies was positively associated with general patenting activ-

ity in renewable energy technologies in a country. This may reflect general 

country-specific tendency and trends to patent in renewable technologies. Like-

wise, there may also be positive spill-over effects from innovation activities 

across renewable technologies.  

To end with, our general findings on the role of policies for innovation activities 

in wind power technologies in OECD countries also provide insights for policy 

design in countries such as China or India, which are striving to become leading 

technology providers for renewable energy supply technologies. Our results 

suggest that traditional supply-side and demand-side policies will be effective 

for building up domestic innovation capabilities in these technologies, especially 

if they are combined with policies which strengthen the innovative capacity of 

the country and set clear targets in stable policy environments. 
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ANNEX A 

Annex Table A1: Descriptive statistics of dependent variable (number of pat-
ents) by country for 1991 to 2011 

Country Obs Mean Std. Dev. Min Max Total 

US 21 55.38 72.01 4 225 1163 

DE 21 86.14 89.00 2 284 1809 

JP 21 28.71 38.79 0 129 603 

FR 21 8.38 9.26 0 30 176 

UK 21 19.76 26.61 0 91 415 

IT 21 9.10 11.24 0 33 191 

NL 21 10.90 11.81 0 35 229 

CH 21 4.19 5.25 0 18 88 

SE 21 6.29 7.18 0 24 132 

AT 21 4.48 6.35 0 20 94 

ES 21 20.67 29.13 0 103 434 

DK 21 56.81 81.35 0 282 1193 
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Annex Table A2: Values for the policy variables targets (T) and stability (S) 

US DE JP FR UK IT NE CH AT SE ES Dk 

year T S T S T S T S T S T S T S T S T S T S T S T S 

1991 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1992 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1993 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1994 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1995 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1996 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1997 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

1998 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

1999 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

2000 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 

2001 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 0 

2002 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 

2003 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 

2004 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 

2005 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 

2006 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2007 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2008 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2009 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Annex Table A3: Results for Poisson fixed and random effects models (stan-
dard errors in parentheses) 

 

Model (1) 

FE 

Model (2) 

RE 

Model (3) 

FE 

Model (4) 

FE 

r&d (t-1) 0.210 *** 0.208 *** 0.192 *** 0.166 *** 

 
(0.0208)  (0.0207)  (0.0208)  (0.0212)  

FIT (t-1) 0.124 * 0.117  0.0743  -0.637 *** 

 (0.0750)  (0.0750)  (0.0755)  (0.104)  

NOFIT (t-1) -0.320 *** -0.310 *** -0.441 *** -0.439 *** 

 (0.0865)  (0.0863)  (0.0912)  (0.152)  

export(t-1) 0.0478 *** 0.0485 *** 0.0378 *** 0.0260 ** 

 (0.0112)  (0.0112)  (0.0113)  (0.0113)  

windcap(t-1) 0.199 *** 0.209 *** 0.131 *** 0.158 *** 

 
(0.0239)  (0.0239)  (0.0240)  (0.0237)  

patents_all_pc (t-1) 1.604 *** 1.520 *** 1.210 *** 0.990 *** 

 (0.108)  (0.109)  (0.114)  (0.115)  

greenvote (t-1) 0.150 *** 0.150 *** 0.126 *** 0.0988 *** 

 (0.00915)  (0.00913)  (0.00938)  (0.00943)  

target (t-1) 0.531 *** 0.537 *** 0.528 *** 0.588 *** 

 (0.0623)  (0.0623)  (0.0626)  (0.064)  

stability (t-1)     0.670 *** -0.047  

     (0.0600)  (0.104)  

FIT x stability (t-1)       1.012 *** 

       (0.107)  

NOFIT x stability (t-1)       0.508 *** 

       (0.168)  

powerprice (t-1) -0.00912  0.0275  0.220  0.359 ** 

 (0.142)  (0.141)  (0.141)  (0.141)  

patents_reg (t) 0.00113 *** 0.00111 *** 0.00122 *** 0.00123 *** 

 (9.92e-05)  (9.90e-05)  (0.000100)  (0.000102)  

         

         

Log likelihood -945.0  -1037.0  -878.3  -826.9  
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Model (1) 

FE 

Model (2) 

RE 

Model (3) 

FE 

Model (4) 

FE 

χ
2
 4423.88 *** 4420.49 *** 4452.08 *** 4447.23 *** 

AIC 1910  2098  1779  1680  

BIC 1945  2140  1817  1725  

Sample size 238  238  238  238  

* indicates individual significance in two-tailed t-test at p = 10 %; 

** indicates individual significance in two-tailed t-test at p = 5 %; 

*** indicates individual significance in two-tailed t-test at p = 1 % 
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