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Abstract 

This paper addresses the following question: How can smart energy management system (SEMS) 
influence the residential electricity consumption at both individual household and national level? 
First, we developed an hourly optimization model for individual households. The energy cost of an 
individual household is minimized under given assumptions on outside temperature, radiation, 
(dynamic) electricity price, and feed-in tariff. By comparing the optimization to the reference 
scenario, we show the impact of SEMS on grid-electricity consumption and photovoltaic (PV) self-
consumption at the individual household level. Second, to aggregate the results to the national 
level, we constructed a detailed building stock taking Austria as an example. By aggregating the 
results of 2112 representative households, we investigate the impact of SEMS in the residential 
building stock on the national electricity system. As a result, we found that for individual single-
family-houses (SFHs) with PV (no battery) and heat pump adoption, SEMS can significantly reduce 
the grid-electricity consumption up to 40.7% for a well-insulated building. At the national level we 
found that, for the buildings with 5 kWp PV but without hot water tank or battery storage, SEMS 
can still reduce the grid-electricity consumption by 7.4% by using the building mass as thermal 
storage. 

 

Keywords: demand-side management, PV, heat pump, energy storage, optimization, building stock 
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1 Introduction 

Under the scenario with large share of renewable generation, demand-side management (DSM) 
measures can become increasingly relevant for multiple sectors to balance the electricity supply 
and demand (Sioshansi 2019). For the residential sector, the example is the diffusion of smart 
energy management systems (SEMS). Combining heat pump (HP), photovoltaic (PV), battery and 
thermal storage (hot water tank and building mass), a household can optimize the operation of 
technologies for lower peak loads, less grid-electricity consumption, as well as lower energy cost. 
The question we want to answer in this paper is, how SEMS can influence the residential sector’s 
electricity consumption at both individual household and national level. 

In the residential sector, the diffusion of DSM measures is promoted by declining costs of PV and 
batteries, as well as other support policies. In Austria, the revision of the Renewable Energy 
Expansion Act (Nationalrat 2021) sets the course for renewable energy communities which is in line 
with the RED II1. Self-generated renewable electricity can be sold within Austria to the members of 
an energy community for a self-determined price with a reduced electricity grid fee. As a result, it 
is expected that the number of prosumagers2 in Austria might increase in the coming years. In this 
regard, this study aims to investigate how SEMS can affect electricity consumption of the residential 
sector at both individual household and national level. 

Numerous studies have analyzed the potential impact of SEMS (or DSM measures) in the residential 
sector. Kandler (2017) established an optimization model for single family houses (SFH) and showed 
that hot water storage and PV systems can significantly support the SEMS. Yousefi (2020) and 
Salpakari et al. (2017) analyzed the impact of DSM measures on the individual cost savings. These 
models cover the energy consumption of a household from different aspects (incl. appliances, space 
heating, hot water) and consider the flexibility based on battery storage, smart devices, electric 
vehicles, thermal mass of the building, etc. However, there are still two major limitations. First, space 
cooling is often missing in modeling household energy consumption (Kandler 2017; Angenendt et 
al. 2019). Second, these studies focus only on individual household level and lack SEMS implications 
at the national level. Sperber et al. (2020) investigated the demand-response potential for SFH with 
HPs in Germany and found that the maximum electric shiftable load through HPs in German SFH is 
57 GWel. Weiß et al. (2019) established a link to a national building stock of Austria and also focused 
on shifting peak demands on single days. Both these approaches aim to investigate the demand 
shift potential at a given time, but not the implications on the electricity demand over the whole 
year. 

So, to fill in the research gaps and answer our research question, this study contributes in the two 
aspects as follows: 

• First, we established an hourly optimization model that covers the demand of households from 
appliances, space heating, space cooling, and hot water. Besides, it also considers the outside 
temperature and radiation profiles, building parameters, and technologies including PV, battery 
storage, hot water tank, and building mass as thermal storage. Both heating and cooling 

                                                   
1 Renewable Energy – Recast to 2030 (RED II) [3]. 
2 “Prosumagers” refers to the households who can produce based on PV while consume, and at the same time, can also 

manage (optimize) the operation of technologies (especially energy storage) for lower energy cost [1]. 
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demand are calculated with a 5R1C approach. The model can also be run without optimization, 
i.e. the “reference mode”, compared with which the impact of SEMS is shown. 

• Second, to capture the implication of SEMS at the national level, we established a link to a 
detailed building stock model (INVERT/EE-Lab) (Müller 2021), and Austria is taken as an 
example. We considered the different building archetypes of SFH and the different behavior of 
households. In total, we have 2112 representative household cases. To the authors’ best 
knowledge, this is the first study that uses optimization to show the impact of SEMS at a national 
level for the case of Austria by creating an explicit link to an established building stock model. 
Furthermore, we examined the effect of two different policy scenarios: flat and variable 
electricity prices. 

The remainder of this paper is structured as follows. Section 2 gives an overview of existing studies 
on SEMS in residential buildings and focuses on the heating and cooling demand modeling. 
Section 3 introduces our model in detail, followed by Section 4 which provides the input data and 
scenario definitions. Then, in Section 5, we present the results by comparing the optimization and 
reference modes at both individual household and national level. At last, we conclude in Section 6, 
discuss the limitations of this approach, and point out the need for further research. 
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2 Literature review 

Developing optimization models for household energy consumption has been motivated by 
different research focuses, for example, self-consumption rate of PV plus battery system (Klingler 
2018), optimal size for PV and battery adoption (Kandler 2017), the impact of DSM measures on 
load shifting of households (Georges et al. 2014), etc. Correspondingly, the studies may cover 
different energy demands and technologies, and may even have different objective functions. 

To evaluate the diffusion of PV plus battery system, Klingler et al. (2018) developed an optimization 
model to maximize the self-consumption rate of PV generation, based on the flexibility from an 
electric vehicle and a HP. Exogenous profiles of electricity consumption, EV charging, and heating 
demand are used to capture the behavior of households. In this way, the study evaluated the market 
potential of PV plus battery systems in Germany. Angenendt et al. (2019) optimized a SFH to 
minimize the household’s energy cost and to find the optimal system configuration. They included 
thermal- and battery storage, PV, and the respective investment costs. However, space cooling is 
not included. On the other hand, Kandler (2017) analyzed the optimal PV panel and battery size 
based on an optimization model that minimizes households’ energy costs. This study further 
considers the hot water tank and building mass as thermal storage to better capture the demand-
side flexibility. 

Several studies suggest that the potential of using thermal mass for load shifting is significant, and 
the interaction between the heating system and the thermal mass is an important factor (Wolisz 
2013; Reynders et al. 2013). With a heating period of two hours, the heating demand of the 
following four hours can be reduced by up to 20%. Georges et al. (2014) simulated a single 
household in detail and found that 3% to 14% of the load can be shifted by using the building’s 
thermal mass with a well-insulated building. Other studies suggest that electric load can easily be 
shifted by electrically heating the concrete slab (Olsthoorn et al. 2019). They find this solution 
feasible for shifting morning and evening peaks in houses ranging from 80 m2 to 200 m2 with a slab 
thickness of 15 cm in the Canadian building stock. Luo et al. (2020) continued this research and 
optimized the parameters for electric heating in concrete slabs concerning shifting potential, 
thermal comfort, and costs. They found that insulation thickness had the most significant effect. 
The limiting factors for utilizing thermal mass are not the thermal mass itself but mainly the 
insulation and heat distribution system. Le Dreau et al. (2016) modeled two different residential 
buildings and examined their potential for heat storage and heat conservation. The findings showed 
that the potential of thermal mass depends on many factors like insulation and heat distribution 
system and the season of the year. On the other hand, the thermal mass also has a significant 
impact on the cooling needs. Kuczynski et al. (2020) compared two almost identical buildings except 
for their external and internal walls in a case study. Compared to the lightweight structure house, 
the cooling demand with concrete walls was reduced by 75% at a 26 °C set temperature. However, 
using building mass as thermal storage for load shifting can also lead to higher energy consumption 
because of greater heat losses. There are two kinds of models to integrate the building mass as 
energy storage into an energy demand model. 

• First, there is sophisticated software (e.g. TRNSYS, EnergyPlus) that calculates the heating and 
cooling demand of a building in detail. However, the disadvantages are: (1) a significant number 
of building parameters must be estimated as inputs; (2) the calculation demands high 
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computation power; (3) it is difficult to integrate other aspects (e.g., appliance electricity, PV, 
electric vehicle, etc.) into an optimization framework. 

• Second are simplified models where buildings are represented by resistances and capacities, 
referred to as “RC models”. Due to the simplicity, we can combine heating and cooling with 
other energy consumption into an optimization framework. Furthermore, we can use sophisti-
cated software for validating the results of RC models. Taking the Irish building stock as an 
example, Heinen et al. (2017) implemented a resistance-capacity (RC) approach. They 
concluded that the households with electrified heating systems could reduce their heating costs 
to the cost of benchmark technology (gas boilers) by utilizing the thermal inertia of their 
building. 

One example of the RC models is the 5R1C model, described in the DIN ISO 13790, where a building 
is represented by 5 resistances and one capacity. The norm offers two basic procedure methods: 
(1) quasi-steady-state approach, which calculates the thermal loads of building over a month; 
(2) simplified hourly approach, which calculates the heating and cooling demand in hourly 
resolution. 

However, Corrado and Fabrizio (2007) found that the quasi-steady approach is unreliable because 
it takes mean outdoor temperature and a steady indoor temperature as input, then continuously 
calculates the operation of heating and cooling technologies. On the other hand, Bruno et al. (2016) 
compared the simplified hourly approach to the results from TRNSYS. The heating demand 
calculated by the 5R1C model is similar to TRNSYS results for single-family compact buildings but 
not for large buildings and buildings with low thermal inertia. The cooling load diverges strongly 
for small buildings but becomes more accurate for larger buildings. Kotzur (2018) states that the 
5R1C approach on an hourly basis provides satisfactory results for heating while the cooling need 
is often overestimated. One reason is the neglect of household behavior: the shading systems are 
usually closed in summer when the solar irradiance is high. Furthermore, Sperber et al. (2020) 
compared a group of RC models, namely 1R1C, 2R2C, 3R2C, 4R3C, and 5R3C with the results from 
TRNSYS. The findings showed that adding a second capacity improved modeling significantly, 
especially for buildings that use low-temperature floor heating instead of radiators. However, they 
did not test the 5R1C approach described in DIN ISO 13790. The DIN ISO 13790 was replaced by 
the ISO 52016 in 2017, where the number of resistances and capacities depends on the building 
geometry and features. 

This study chooses the previous norm (DIN ISO 13790) to model heating and cooling demand. The 
computational effort for implementing the norm ISO 52016 would be enormous, especially if we 
want to combine the optimization with other technologies. In the ENTRANZE project, Müller et al. 
(2014) tested the previous norm (DIN ISO 13790) against the results from Energy Plus and 
INVERT/EE-lab. As shown in the results, the hourly model overestimates cooling energy needs, 
especially in Mediterranean climates, but the energy needs for heating are in accordance. The 
comparison is made on a monthly basis where the energy needs of the hourly calculations are 
added up. 
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3 Model 

Figure 1 presents the overall structure of our model for individual households. The model takes the 
specific parameters of a single household into account and calculates the energy demand and 
operating costs over the whole year on an hourly basis. A single household consists of the building 
parameters, a thermal and battery storage optionally, a rooftop PV, an HP, either air sourced or 
ground sourced, and an optional air-conditioner (AC) for cooling. In addition, the indoor set 
temperature can be varied depending on the household’s preferences. 

Figure 1: Structure of the Model 

 

3.1 Heat Pump 
The HP is modeled either with an air or ground source heat exchanger. Following assumptions are 
made to get a linear representation of the HP working conditions: (1) The indoor temperature in 
the building is homogeneous; (2). The HP’s coefficient of performance (COP) is linearly related to the 
outdoor or ground temperature. Then, the COP of HP is modeled as equation (1), solely dependent 
on the source temperature (𝑇𝑇𝑡𝑡0) and the supply temperature (𝑇𝑇𝑡𝑡𝑆𝑆). 𝜂𝜂 is a constant efficiency factor 
set to 0.4 for the air HP and 0.35 for the ground source HP. 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝜂𝜂 ×
𝑇𝑇𝑡𝑡𝑆𝑆

𝑇𝑇𝑡𝑡𝑆𝑆 − 𝑇𝑇𝑡𝑡0
 (1) 
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t 

Figure 2: COP curve estimated with Carnot efficiency compared to manufacturer data 
(Bosch, Viessmann, Daikin, Helios, Ochsner, ed. (n.d.)) 

 
The values of 𝜂𝜂 for the air and ground source HP were chosen so that the resulting COP is consistent 
with the data from various HP manufacturers (Bosch, Viessmann, Daikin, Helios, Ochsner). A 
comparison of the different COP values from manufacturers and the calculated COP is given in 
Figure 2. The data from manufacturers is visible as box-plots. An average supply temperature of 
35 °C is considered. The ground source HP depends not on 𝑇𝑇𝑡𝑡0 but on the temperature below the 
ground, estimated at 10 °C. 

The HP is designed to supply enough heat to a building when the outside temperature is at -14  C. 
This temperature was chosen because it is just below the typical value for sizing heating systems in 
Austria. In case of temperatures below -14 °C, we consider a supplementary electric heater (COP = 
1). The size of the AC was chosen to be sufficiently large to keep the indoor temperature of the 
building at a temperature of 27 °C on the hottest day of the year. 

3.2 Energy storage 
Regarding the storage solutions in the model, we consider a hot water tank for space heating and 
a battery, which can be implemented with different sizes or not at all. For simplification, assumptions 
on the heat exchange inside the hot water tank are made so that it doesn’t introduce non-linearity 
to the optimization: (1) The temperature inside the hot water tank is homogeneous; (2) The 
temperature surrounding the tank is constant at 20 °C; (3) The thermodynamic properties of the 
water - heat capacity (cwater), volume, and pressure - are constant. The hot water storage is modeled 
with a heat loss coefficient of 0.2 W/m2K. The state of charge (SOC) is determined by the water 
temperature, which is initially 28 °C. The energy inside the tank (𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 ) is described through 
equation (2). The following equations represent the physical limits of the hot water storage. 

𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 = 𝑚𝑚𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × �𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 − 28� (2) 

 

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,0 = 28 (3) 

 

28 ≤ 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 ≤ 45 (4) 
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𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡 = 0.2 × 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × �𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 − 20� (5) 

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 denotes the water temperature inside the tank. 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 2F

3 indicates the surface area of the tank. 

Only one tank is considered in this analysis with a volume of 1500 liter and a surface area of 7.32 m2. 

Regarding the battery, we make following assumptions: (1) The input and output power is limited to 
4.5 kW; (2) The efficiencies for charging and discharging are equal to 95%. According to Kebede et 
al. (2021), roundhouse efficiencies of stationary battery storages are reported to be in the range 
between 78% and 98%. Our estimated round house efficiency of 90.025% is well within this range; 
(3) The battery is empty at the beginning of the simulation and the capacity of battery is 7 kWh. In 
Hernández et al. (2019), the optimal battery size for households was calculated to be between 3.6 
and 6.9 kWh. Also, Leonhartsberger and Wittmann (2021), who conducted a market analysis on 
battery storages in Austria, found that the average storage capacity is around 6.7 kWh. We chose 
7 kWh for this study. 

3.3 Thermal capacity of buildings 
The necessary heating and cooling power to keep the indoor temperature at a certain level is 
calculated with a simplified 5R1C model described in DIN ISO 13790. 

                                                   
3  Atank is derived from the volume (V) of the tank by calculating the minimal surface area, i.e. Atank = 2πr2 + 2V/r, with r being the 

radius which is calculated by 𝑟𝑟 = (2 × 𝑉𝑉/4𝜋𝜋)1/3. 
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Figure 3: Heat flows in the 5R1C grid (DIN EN ISO 13790) 

 
As shown in Figure 3, the 5R1C model describes a building through an electrical circuit with five 
resistances and one capacity. The resistances represent thermal transmission coefficients for windows 
(𝐻𝐻𝑡𝑡𝑡𝑡,𝑤𝑤 ), walls (𝐻𝐻𝑡𝑡𝑡𝑡,𝑒𝑒𝑒𝑒  for the effective thermal mass and (𝐻𝐻𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚  for the whole surface mass), 
ventilation (𝐻𝐻𝑣𝑣𝑣𝑣 ), and a thermal conductance between the indoor air node and the surface 
temperature node. This model is computationally affordable by simplifying the building’s properties 
and, therefore, can be integrated into an hourly linear optimization algorithm. 

Through the 5R1C approach, the model can store energy in the building envelope by pre-cooling 
or pre-heating the building. The profitability and the amount of stored energy depend primarily on 
the thermal insulation of the building. While a greater thermal capacity indicates a higher storage 
potential, a maximum exists where more thermal mass does not result in further storage potential as 
the heat transfer rate is too low (Chen et al. 2020). In addition, the thermal losses that would occur in 
a prolonged heating/cooling period would predominate so that it is no longer profitable to 
cool/heat the house prematurely. 

3.4 Running modes 
Based on the modules introduced above, our model can run in two modes: optimization and 
reference. By comparing the results of the two modes, we show the impact of SEMS. 
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3.4.1 Optimization mode 
The optimization was developed in Python with Pyomo (Hart et al. 2017) and solved by Gurobi4. 
The objective is to minimize the household’s electricity cost over a whole year as shown by 
equation (6), with 𝐸𝐸𝐸𝐸𝑡𝑡 , 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.𝑡𝑡 , 𝐹𝐹𝐹𝐹𝐹𝐹 , 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝2𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑡𝑡  representing the electricity price, grid-electricity 
consumption, feed-in tariff, and PV-generation sold to the grid, respectively. 

min      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝐸𝐸𝐸𝐸𝑡𝑡8760
𝑡𝑡=1 × 𝐸𝐸𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.𝑡𝑡 − 𝐹𝐹𝐹𝐹𝐹𝐹 × 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝2𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑡𝑡 (6) 

The total grid-electricity consumption consists of all internal loads from appliances (𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎.𝑡𝑡), heat 
pump (𝐸𝐸𝐸𝐸ℎ𝑡𝑡.𝑡𝑡), and cooling (𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐.𝑡𝑡), minus the consumption supported by PV-generation (ECpv,t) 
and battery (ECbattery,t) (equation (7)). Besides, the PV-generation (𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝.𝑡𝑡) goes to internal loads, 
grid, or battery (equation (8)) 

𝐸𝐸𝐸𝐸𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟.𝑡𝑡 = 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎.𝑡𝑡 + 𝐸𝐸𝐸𝐸ℎ𝑡𝑡.𝑡𝑡 + 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐.𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝.𝑡𝑡 − 𝐸𝐸𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑡𝑡 (7) 

 

𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝.𝑡𝑡 = 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡 + 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝2𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑡𝑡 + 𝐸𝐸𝐸𝐸𝑝𝑝𝑝𝑝2𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏.𝑡𝑡 (8) 

3.4.2 Reference mode 
In the reference mode, the input parameters are the same but without optimization. Heating and 
cooling demand profile are decided by outside temperature, radiation and indoor set temperature. 
PV- generation is assumed to satisfy electricity consumption of the household directly. The excess 
generation will be first stored in the battery, then sold to the grid. On the other hand, battery is 
discharged immediately to cover internal loads if needed. In the reference mode, the thermal mass 
of the building is considered in the thermal dynamics (captured by 5R1C model) but without being 
optimized, i.e. pre-heated or pre-cooled. Besides, the hot water tank is not used in the reference 
mode for simplification5. Based on the assumptions above, the self-consumption rates of 5 kWp 
and 10 kWp PV system without battery are 32.78% and 21.75%, respectively. They will be increased 
to 47.19% and 31.66% when battery is available. These results are in the range consistent with 
existing studies (Yildiz et al. 2021; Luthander et al. 2015).  

                                                   
4  Mathematical programming solver, https://www.gurobi.com/. 
5  With the logic we implemented for the battery, the tank would always be charged in summer with excess PV-electricity, however, 

it cannot be discharged because space heating is not needed. In the end, this results in high losses and self-consumption rate 
of PV generation, which is also unrealistic and disrupts the purpose of “reference mode”, i.e. serving as the benchmark for 
comparison. So, for simplification, we don’t consider the use of hot water tank in the reference mode. 

https://www.gurobi.com/
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4 Data and Scenarios 

This section presents the exogenous input data shown in Figure 1 and defines the scenarios for 
further calculations. 

4.1 Energy demand of households 
For the representative household in our model, three aspects of energy demand are set 
exogenously: electricity base load profile (from appliances), hot water demand profile, and indoor 
set temperature. 

The electricity base load profile is a synthetic load profile for a single household (APCS, ed. 2019). 
It is a mean profile of many households. Therefore, it is not representative of a single dwelling. 
However, our optimization assumes a perfect forecast, which is impossible for electrical loads like 
cooking or a coffee machine or hot water demand from showering in a single household. Hence, 
we use these smoothed profiles to prevent the over-optimization for these unpredictable loads. 

The hot water demand profile shape is taken from the HOTMAPS (Aydemir et al. 2020) project. It is 
configured to a mean daily consumption rate of 90 liters of hot water in the household (ÖNORM, 
B, ed. 2019). The natural temperature of the water is assumed to be 10 °C and the supply 
temperature 55 °C. Thus, the average hot water energy demand is 1725 kWh/year. 

At last, two different indoor temperature settings were used in this model. The first is a straight 
temperature band with a minimum temperature of 20 °C during the day and 18 °C during the night 
(10 pm to 6 am). The maximum temperature is 27 °C. In the second temperature setting, the 
minimum temperature is a function of the outside temperature: 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚 = 20 + (𝑇𝑇𝑡𝑡0 − 8)/8 (9) 

The maximum temperature is set to the minimum temperature plus 5 °C and capped at 27 °C. Both 
indoor set temperature bandwidths are presented in Figure 4 together with the outside 
temperature. 
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Figure 4: Outside temperature together with the two different indoor temperature 
settings 

 

4.2 Outdoor temperature, radiation, and PV generation 
The outdoor temperature and radiation profiles are exogenously derived from PV GIS (Huld et al. 
2012). To enhance the quality, we first download the hourly profiles for a whole year at NUTS-3 
resolution, then aggregate to the national level by taking the weighted average with regional heat 
demand as the weights to ensure a descriptive profile for the building stock in Austria. The 
information on regional heat demand is taken from the HOTMAPS Database (Aydemir et al. 2020). 
The direct and indirect solar radiation is obtained in every celestial direction on a vertical plane which 
then will be multiplied with the effective window area of the respective direction to calculate the 
solar gains. 

We set the PV sizes at 5 kWp and 10 kWp of crystalline silicon type for the PV generation profile with 
a system loss of 14%. Hernández et al. (2019) analyzed the optimal PV and battery storage size, 
taking battery degradation into account, and found that the optimal PV size should be between 1.8 
and 2.7 kWp. However, their households did not use HP. Therefore, the electricity consumption per 
year is significantly lower than the case in our study. 

4.3 Electricity price and feed-in tariff 
The electricity price is the driving factor in an economic minimization problem. The variable 
electricity price was taken from EXAA (2016) in 2016 for Austria. We added a fixed grid fee plus taxes 
of 15 cent/kWh to the variable price to make it a realistic price profile6. The flat price was set to the 
mean value of the variable price to get comparable results when using a flat price in the simulation. 
The feed-in tariff (FiT) for electricity sold to the grid is constant at 7.67 cent/kWh (E-control 2017). 
These prices are shown in Figure 5. 

                                                   
6 The statistical information on this price signal is as follows: mean, 17.9 cent/kWh; maximum, 25.1 cent/kWh; minimum, 9.9 

cent/kWh; first quantile, 17.2 cent/kWh; third quantile, 18.5 cent/kWh; standard deviation, 1.2 cent/kWh; variance, 
1.3cent/kWh. 
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Figure 5: Variable and flat hourly electricity price together with the FiT (EXAA 2016, E-
control 2017) 

 

4.4 Building parameters and stock data 
All building parameters are selected from the INVERT/EE-Lab Database (Müller 2021). In this study, 
we only consider single-family houses (SFH). 11 different representative building types were 
selected from the Austrian building stock. Every building type represents buildings built in a specific 
time period starting from 1890 up to 2011. For buildings built up to 1980, only those buildings that 
have been refurbished since then are considered. It is unlikely to install HPs in old buildings with 
insufficient insulation and an old heat distribution system. 

Figure 6: Number of selected SFH in this study from the Austrian building stock (Müller 
2021) 

 
Figure 6 illustrates the number of buildings of all 11 categories and the share of buildings using a 
HP for heating. Information on each building category is provided in Table 2. 

There are around 1.55 million SFH in Austria and 119 397 PV installations with an average capacity 
of 5.7 kWp (Statistic Austria, O, ed. 2021). The number of buildings we consider in this study is 
375 282. Since 2011, around 120 000 SFH were built, and as we estimate, 33% of them were built 
with a PV. That leaves approximately 80 000 PV installations for buildings up to 2011, where we 
assume that a large margin (90%) was installed in renovated or buildings built after 2000. Therefore, 
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the percentage of SFH with a PV installed is 19% for the buildings we consider. 17.6% are 5 kWp 
installations and 1.4% are 10 kWp installations. 

According to Leonhartsberger and Wittmann (2021), a total number of 21 838 batteries were 
installed in Austria’s residential homes in combination with a PV since 2014. We estimate that 
around 67% of those are installed in newly built buildings (after 2014). No numbers are available 
before 2014, as batteries were too expensive and not established in the market. Thus, 2% of the 
buildings considered in this work have a battery installed in combination with a PV. 

The total amount of sold small-scale thermal storages is not reported anywhere for the case of 
Austria. Most HPs have been installed in combination with a small domestic hot water storage. In 
this paper, we use the estimation that 60% of all buildings with a HP considered in this work also 
have a thermal storage. Out of the 375 282 buildings, 84 712 have a HP. To show the potential of 
SEMS, we assume that all buildings considered in this study with a HP are being optimized. 25% of 
all HPs in Austria are ground sourced (Emhofer et al. 2014). 

4.5 Scenarios 
To cover as many sensitivities and possibilities as well as influential factors, we established various 
household parameters for all representative buildings. The following dimensions capture each case: 
(1) Technology, including hot water tank, battery, PV size, etc. resulting in 96 configurations for 
each SFH (Table 1); (2) Building, including 11 representative SFH and their standard heating demand 
calculated based on ÖNORM (2019) (Table 2); (3) Electricity price, including flat and variable price. 
In total all 96 configuration options were applied to the 11 building types. The resulting 1056 
households were run with both electricity prices resulting in a total of 2112 simulations in 
optimization and reference mode. 

Table 1: Technology configurations 

Technology Parameter Values 

Hot water tank 0 liter, 1500 liter 

Battery size 0 kWh, 7 kWh 

PV size 0 kWp, 5 kWp, 10 kWp 

HP type air source, ground source 

Cooling adopted, not adopted 

Indoor temperature fixed temperature range, smart temperature rang 
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Table 2: Building IDs with average floor area (Af ) and useful energy demand for space 
heating (ÖNORM, B, 2019) 

ID Type Age Class 
Af (m2) 

Useful demand for space 

heating (W/m2) 

1 SFH 1890-1918 129 161.8 

2 SFH 1890-1918 129 132.1 

3 SFH 1919-1944 136 160.2 

4 SFH 1919-1944 136 146.2 

5 SFH 1945-1960 144 136.1 

6 SFH 1961-1970 154 105.9 

7 SFH 1971-1980 163 105.9 

8 SFH 1981-1990 166 93.4 

9 SFH 1991-2000 170 88.9 

10 SFH 2001-2008 170 69.1 

11 SFH 2009-2011 170 69.1 
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5 Results 

This chapter compares the results of optimization and reference modes to show the impact of 
SEMS. First, taking an individual building perspective with different households’ configurations, 
Section 5.1 analyzes the impact of SEMS on energy consumption, including grid-electricity demand 
and the self- consumption of PV. Then, based on a detailed construction of the building stock in 
Austria, Section 5.2 investigates the impact of SEMS on the total energy consumption at the national 
level. 

5.1 Impact on individual households 
Figure 7 shows the result from both reference and optimization modes under a flat electricity price. 
First, as shown in the top-left plot, buildings with better insulation demand less electricity from the 
grid, and optimization can further reduce this amount. The maximum annual decrease of grid-
electricity consumption through SEMS is 40.69%, which is found for a well-insulated building 
(ID = 11) equipped with a 10 kWp PV (no battery), an AC, a ground source HP, and thermal storage. 
Second, the adoption of PV significantly reduces the grid-electricity consumption, and the larger 
size of PV leads to lower grid- electricity demand (up-right). Third, as shown in the left bottom plot, 
the thermal storage has limited impact on the optimization results. The key reason is that, when the 
radiation is higher in summer, space heating is not needed, so the optimization will not save the 
excess PV-generation in the tank. The thermal tank is only used by the buildings with 10 kWp PV 
systems because they generate enough electricity to be stored in the tank in winter. In the reference 
mode, the thermal storage is not being used, hence the results are identical. The use of the battery 
(bottom right) results in much lower electricity demand in the reference mode as most of the 
surplus electricity can be stored and used. In the optimization mode, the difference is not 
significantly visible because the optimization can also utilize other storage potentials (eg. pre-
heat/cool the building) when no battery is available. 
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Figure 7: Impact of SEMS on PV self-consumption rate of individual households (flat 
price). 

The height of the violin represents the distribution. The width represents the density of plotted 
results for different households. 

Figure 8 illustrates the PV self-consumption rate for all 2112 simulations under reference and 
optimization modes. Obviously, the self-consumption rate is zero for all household configurations 
that do not have a PV system. It is also visible that optimization improves the self-consumption rate 
to a specific threshold where it is more profitable to sell instead of saving the electricity. With a 
10 kWp PV, the overall consumption rate drops compared to the 5 kWp PV because electricity 
surplus cannot be utilized. Again, the impact of thermal storage on self-consumption rate is limited 
in the optimization. 

On the other hand, under variable price, SEMS can further improve the profitability of a given 
technology configuration by using more electricity to pre-heat the hot water tank when the price 
is lower. However, this difference is not visible when comparing all possible configurations at the 
same time. Therefore, this comparison is provided at an aggregated level in Section 5.2 
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Figure 8: Impact of SEMS on PV self-consumption rate of individual households (flat price) 

Furthermore, concerning the configurations of indoor set temperature and HP source, the 
calculations show that their impacts are limited: 

First, the mean difference among all 2112 calculations in electricity consumption from the grid 
between the two indoor set temperature functions was 0.42%, 2.59%, and 2.61% for the reference, 
the flat price optimization, and the variable price optimization, respectively. With the second indoor 
set temperature, the demand increased compared to the first set temperature. The optimization 
pronounces the difference meaning that the first indoor set temperature function has a higher 
potential to reduce electricity demand from the grid. The price signal has virtually no influence. 

Second, the ground source HP reduces grid demand by 22.55%, 21.79%, and 22.2% in reference, 
the flat price optimization, and the variable price optimization compared to the air source HP. 
Hence, we can deduce that the optimization has minimally more impact on buildings with an air 
source HP. This was expected as the optimization algorithm can utilize the change in COP with an 
air HP. 

Third, when an AC is implemented, the grid demand rises by 2.73%, 2.31%, and 2.27% in the 
reference, the flat price optimization, and the variable price optimization. 



Investigating the Impact of Smart Energy Management System on the Residential Electricity Consumption in 
Austria  

Fraunhofer ISI  |  22 

5.2 Impact on the national electricity system 
Following the assumptions made in Section 4.4 on the distribution of technologies in the buildings 
stock, Figure 9 shows the total number of buildings with a HP and a specific technological 
configuration: PV size with 0, 5, or 10 kWp; Battery (B) size with 0 or 7 kWh; Hot water tank (T) size 
with 0 or 1500 liter. The majority of the buildings do not have a PV, and only 23 buildings have a 
10 kWp PV and a storage. 

Figure 9: Number of buildings in the three scenarios with different technical 
configurations 

 
The number of buildings with the specifications shown in Figure 9 are broken down by percentage 
into the individual building classes. Subsequently, the results are calculated for all building classes 
with the respective specifications in the optimization and reference mode. 

The resulting electricity demand is shown in Figure 10. The bars represent the total electricity demand 
from the grid on a logarithmic scale. The percentage change in grid-electricity consumption through 
the optimization of each configuration is shown on the right-hand axis for both price scenarios. The 
absolute values of these percentages are presented in Table 3. Buildings with no PV and no storage 
don’t change their consumption with a flat price signal. But they increase their consumption by 
1.02% with a variable price. Thus, the variable price gives the incentive to use the building mass as 
thermal storage to shift heating load and reduce energy cost. The grid-electricity consumption is 
reduced by 7.39% and 17.88% for a 5 kWp PV and a 10 kWp PV (flat price) and by 7.22% and 17.75% 
(variable price), respectively, without any storage implemented. This highlights the potential of 
utilizing thermal mass as storage. As mentioned in Section 5.1 the variable price leads to a higher 
utilization of the thermal storage to bridge high prices and thus the percentage decrease of 
electricity consumption is less for those houses. In total, the optimization can lower the annual grid-
electricity demand by 10.4 GWh or 6.8 GWh for the whole investigated building stock under the 
flat and variable price scenarios, respectively. 
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Table 3: Grid-electricity consumption increase and decrease for buildings with certain 
configurations (unit: MWh) 

Building 
configuration 

Flat [MWh] Variable [MWh] Building configuration Flat [MWh] Variable 
[MWh] 

PV0B0T0 0 1451 PV0B0T1500 -3682 -1886 
PV5B0T0 -1587 -1551 PV5B7T0 -5 1 
PV5B0T1500 -4275 -3946 PV5B7T1500 -32 -22 
PV10B0T0 -270 -268 PV10B7T0 -1 -1 
PV10B0T1500 -574 -555 PV10B7T1500 -4 -3 

 

Figure 10:  Impact of SEMS on grid-electricity consumption of the building stock 

 
Figure 11 shows the aggregated self-consumption rate of buildings with different configurations. 
The grey bars represent the results from the reference mode. In the reference mode the 
consumption rate for buildings with PV and no battery storage are the same since the thermal 
storage is not utilized in the reference mode as introduced in Section 3.4.2. Buildings with a thermal 
storage show almost the same increase in self-consumption rate as buildings without a thermal 
storage. Again, buildings without the thermal storage utilize the building mass instead. For 
buildings with a battery storage, the SEMS does not result in such a high increase in self-
consumption because the battery already increases self-consumption significantly in the reference 
mode. The difference in self-consumption increase between the flat and the variable price signal is 
minimal. 
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Figure 11: Impact of SEMS on PV self-consumption rate of the building stock 
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6 Conclusions 

Promoted by the Renewable Energy Expansion Act and declining PV and battery prices, the number 
of prosumagers in Austria is expected to grow. This study evaluates how such change can impact 
the electricity consumption of the residential sector at both individual household and national 
levels. Starting with a detailed hourly model which can be run with both optimization and reference 
modes, we comprehensively evaluated 2112 cases of representative households. Furthermore, we 
aggregated the results of individual households to the national level based on detailed modeling 
of the SFH stock in Austria and evaluated the impact of SEMS at a national level. Two policy 
scenarios are also considered: flat and variable electricity price. 

First, we found that SEMS can significantly increase the self-consumption of PV-generation, 
regardless of the building typology and configuration. Here we highlight the usage of building 
mass as thermal storage. For the buildings with 5 kWp PV system and without any storage, SEMS 
can decrease the overall electricity demand from the grid by 1.5 to 1.6 GWh in Austria. Second, the 
application of variable electricity price can further facilitate the load-shifting significantly, by pre-
heating or pre-cooling the building, when SEMS is implemented. So, from a sector coupling 
perspective, time variable electricity pricing could be a promising option for policy design. However, 
pre-heating the building when the electricity price is lower may also lead to higher losses from the 
thermal mass, which means higher electricity consumption. A comprehensive analysis on the impact 
of variable electricity price is still needed. At last, SEMS can also impact the investment decision of 
a household. However, this paper only considers the “operation” of the household energy system 
and provides limited implication for investment decisions. This topic will be covered in our further 
studies. 

This paper has the following limitations. First, the building stock data only covers buildings up to 
2011, which we plan to update in further steps of this research. Also, we did not yet consider the 
possible evolution of the building stock and installed heat pumps and other technologies in the 
coming years and decades. Second, as Kotzur (2018) mentioned, the 5R1C model can overestimate 
the cooling demand, which needs further analysis and calibration. An evaluation of the load profiles 
and peak loads will follow. However, in Austria, SEMS has limited effects on cooling consumption, 
especially compared with heating. Therefore, it won’t influence the main findings of this study. The 
variable price signal did make the usage of thermal mass lucrative for homeowners. However, a 
further sensitivity study on the volatility of the price signal can be conducted. Third, Battery 
degradation was not included in the optimization algorithm. By including battery degradation, the 
optimization will have a different impact on buildings with a battery concerning consumption 
behavior as well as cost reductions. 
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