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Abstract: The transformation of the energy system is a highly complex process involving many
dimensions. Energy system models help to understand the process and to define either target systems
or policy measures. Insights derived from the social sciences are not sufficiently represented in
energy system models, but address crucial aspects of the transformation process. It is, therefore,
necessary to develop approaches to integrate results from social science studies into energy system
models. Hence, as a result of an interdisciplinary discourse among energy system modellers, social
scientists, psychologists, economists and political scientists, this article explains which aspects should
be considered in the models, how the respective results can be collected and which aspects of
integration into energy system models are conceivable to provide an overview for other modellers.
As a result of the discourse, five facets are examined: Investment behaviour (market acceptance),
user behaviour, local acceptance, technology innovation and socio-political acceptance. Finally,
an approach is presented that introduces a compound of energy system models (with a focus on
the macro and micro-perspective) as well as submodels on technology genesis and socio-political
acceptance, which serves to gain a more fundamental knowledge of the transformation process.

Keywords: energy system modelling; social science; system optimisation; energy transition;
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1. Introduction

The need for a transformation of the energy system due to climate change led to the development
of more models that provide insights and solutions for future energy systems concerning climate policy,
the security of supply and economic developments [1]. Energy system models (ESM), which cover the
entire energy system including the sectors for energy production, buildings, transport and industry
from a techno-economic perspective, provide decision support [2]. Recently, the number of different
energy and electricity market models has grown significantly. Ref. [3] gives an overview of 75 different
models (with a focus on the electricity sector) in the current modelling landscape, which illustrates the
central role ESM already play. Ref. [1] identifies the four main challenges of ESM being the computing
time, uncertainty and transparency, growing complexity and integrating human behaviour, social
risks and opportunities in ESM. Although [4] emphasises that energy transitions are a combination of
technical, social and political factors, the field of social science is greatly underrepresented in energy
system modelling [5–7]. Possible transformations of the energy system are mainly considered from
a techno-economic perspective. To date, social factors have largely been neglected in ESM, thereby
limiting the insights derived and, as such, the integration of social and behavioural factors would
vastly improve the overarching messaging from ESM.

However, which specific aspects to include and how this can be done is not always straight-forward.
Individual approaches, for example, exist that are focussed on the integration of acceptance into
ESM [8,9]. Existing approaches concerning different aspects of social and behavoiural factors are
presented based on the literature review. Based on already existing approaches, this article aims to
provide a more generalised overview, to highlight which aspects of social science should be considered
in ESM, which methods are suitable for this purpose and how these could be integrated. Furthermore,
we will demonstrate how the coupling of different models can lead to a deeper understanding of
the energy system interrelationships when taking social factors into account. The article reflects the
results of an interdisciplinary discourse of scientists from the social science, psychology, economics,
political science and energy system modelling disciplines and thus aims to support other energy system
modellers on how to consider social science findings and methods in future work.

Figure 1 gives an overview of the article structure. In the following sections, we categorise
and briefly describe ESMs from the macro and micro-perspectives. The extent of the integration of
social science factors into these models is reviewed in the literature in Section 2. In Section 3, two
socio-scientific agent-based models are presented, which represent the aspect of technology genesis on
the one hand and socio-political acceptance on the other. Section 4 collates which factors should be taken
into account in ESM from a social science perspective, and how they can be analysed and integrated
into ESM at the macro and micro level. The different model categories answer different questions,
but together they provide an even more fundamental understanding of the systemic relationships and
complement each other well. Section 5, therefore, shows how the models of the different categories can
be coupled. In Section 6, we summarise and discuss the main conclusions of the previous sections.
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optimisation/scenarios to simulation/prediction, 4. scenarios relying on more qualitative or mixed methods 
rather than detailed mathematical models.” For this article, the first two categories will be considered, 
since the need for integration of social science factors is particularly great here. 

According to Ref. [15], the model landscape can be divided into top-down (economy-wide 
perspective; limited representation of the energy system), bottom-up (detailed representation of the 
energy system) and hybrid models (those that include the energy sector as a module), among which 
different methods (e.g., econometric, optimisation) are used. The distinction between bottom-up and 
top-down approaches is less conceptual and based more on the different sectoral and technological 
levels of detail [16]. The ESMs considered in this article are bottom-up models that consider the 
energy system in great detail. 

In this article, the authors show why and how social science factors can be integrated into 
different types of ESM. For this purpose, an additional dimension is considered (micro and 
macro-perspective). The macro models examine the entire energy system in an aggregated form, 
while the micro models represent actions and decisions from the point-of-view of a specific sector or 
actors. For the category of macro models, both energy system optimisation (ESOM) (Section 2.1.1) 
and Computable General Equilibrium (CGE) models (Section 2.1.2) are described. In the 
micro-perspective, optimisation and simulation approaches are presented (Section 2.2). For each 
model category, the aim of the model, typical input and output data and representatives of the 
model are illustrated. Previous approaches to integrating empirical social science data into the 
models are shown in Section 2.3.  
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2. Categorisation of Techno-Economic Energy System Models

ESM answer different questions and therefore use different methods. Reviews of ESM can be found,
for example, in [1,3,10–14], where, in addition to a categorisation of ESM, criteria for differentiating the
models are listed. Ref. [1] (p. 4) divides the landscape of ESM into four categories: “1. models covering
the entire energy system, primarily using optimisation methods, with the primary aim of providing scenarios of
how the system could evolve, 2. models covering the entire energy system, primarily using simulation techniques,
with the primary purpose of providing forecasts of how the system may evolve, 3. models focused exclusively on
the electricity system, ranging in methods and intentions from optimisation/scenarios to simulation/prediction, 4.
scenarios relying on more qualitative or mixed methods rather than detailed mathematical models.” For this
article, the first two categories will be considered, since the need for integration of social science factors
is particularly great here.

According to Ref. [15], the model landscape can be divided into top-down (economy-wide
perspective; limited representation of the energy system), bottom-up (detailed representation of the
energy system) and hybrid models (those that include the energy sector as a module), among which
different methods (e.g., econometric, optimisation) are used. The distinction between bottom-up and
top-down approaches is less conceptual and based more on the different sectoral and technological
levels of detail [16]. The ESMs considered in this article are bottom-up models that consider the energy
system in great detail.

In this article, the authors show why and how social science factors can be integrated into different
types of ESM. For this purpose, an additional dimension is considered (micro and macro-perspective).
The macro models examine the entire energy system in an aggregated form, while the micro models
represent actions and decisions from the point-of-view of a specific sector or actors. For the category
of macro models, both energy system optimisation (ESOM) (Section 2.1.1) and Computable General
Equilibrium (CGE) models (Section 2.1.2) are described. In the micro-perspective, optimisation and
simulation approaches are presented (Section 2.2). For each model category, the aim of the model,
typical input and output data and representatives of the model are illustrated. Previous approaches to
integrating empirical social science data into the models are shown in Section 2.3.

2.1. Techno-Economic Energy System Models from a Macro-Perspective

ESM with a macro-perspective depict the entire energy system, often including all sectors in great
technical detail and consider both the operation and expansion of technologies in an aggregated form.
They differ from models with a micro-perspective in that no individual decisions are represented, but the
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system (e.g., the whole of Germany) perspective is taken into account. ESMs with a macro-perspective
can be divided into optimisation models and CGE models, which are described in the following
two sections.

2.1.1. Energy System Optimisation Models

Energy system optimisation models (ESOM) depict the components of the energy system through
technical and economic parameters. They usually make use of mathematical optimisation, whereby the
costs for the operation and expansion of the system are minimised.

Model target: generation of a cost-optimal system composition under specified boundary conditions,
such as a specified CO2 reduction target. The technology expansion, the technology operation and the
systemic interrelationship of the technologies are considered. Conversion technologies (electricity, heat
and hydrogen), storage, imports and exports, as well as transmission networks, are considered. These
can be applied to explore as examples the following questions: “Which system configuration enables a
reduction in greenhouse gases by 95% by 2050 compared to 1990?”, or “What effects will the transport
sector have if the residential buildings are renovated?”.

Typical input: electricity and heating demand, technology stocks, technology potential,

techno-economic technology parameters, weather data, generation curves and energy source prices.
Output: technology expansion, technology operation, total system costs, CO2 emissions.

Models: example representatives of the model category are: TIMES [17], REMod [18],
ENERTILE [19], OSeMOSYS [20], Calliope [21] or MARKAL [22].

2.1.2. Computable General Equilibrium Model

A market equilibrium model or Computable General Equilibrium (CGE) model [23–26] focuses
on the entire economic system and, especially, on the interrelations between sectors and countries [23].
CGE models are based on the neoclassical theory of general equilibrium, which consists of three
equilibrium conditions, namely the zero-profit condition (no firm profits due to perfect competition),
the market clearance condition (demand equals supply if prices are positive) and the budget constraint
condition (household income must equal household expenses). Those equilibrium conditions are
then combined with assumptions on agent behaviour and preferences (consumers and producers),
mathematically formulated as a mixed complementarity problem and solved, such that a general
equilibrium on all markets is identified. Technical details within the energy sectors are typically not
considered; however, a hybrid approach allows the addition of some technical disaggregation.

The economic interrelations in a CGE model are represented through a circular flow of monetary
units, where production factors are utilised for producing firms’ output. From the provision of capital
and labour, the consumers receive a money value (wage and return on capital), which they can either
spend on the consumption of produced goods or invest. Investments increase the capital endowment
in the subsequent period and, hence, increase production possibilities in the future. The government
influences the optimal distribution of resources through taxes and benefits.

Mathematically, this circular economy is represented through production functions (profit
maximisation of firms) and utility functions (utility maximisation of households). While the specification
of different production functions allows the consideration of several technology options, technological
changes and, hence, innovation, the specification of heterogeneous preferences captured in the utility
functions enables the modeller to depict certain aspects of consumer behaviour.

Model target: cost-effectiveness analysis of energy and climate policy instruments considering

the entire economic system.
Typical input: population growth, economic data for the base year (e.g., on production factors,

technology efficiencies, etc.), development of CO2 emissions.
Output: development of Gross Domestic Output (GDP), employment, international

competitiveness, CO2 prices, electricity generation, etc.
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Models: example representatives of the model category are: DART [27,28], EMEC [29,30],
GEM-E3 [31], IMACLIM-R [32], NEWAGE [33], PACE [34], SNOW-NO [35,36].

2.2. Techno-Economic Energy System Models from a Micro-Perspective

ESMs applied from the micro-perspective include a detailed technological representation of the
system on individual aspects and incorporate, for example, investment behaviour. These models are
often used to provide a rational basis for decisions on energy policy decisions and therefore act as
decision support. These types of models operate either based on exploring the impact of specific
policies on a particular energy demand sector (such as buildings, households, industry), or pathways to
achieve certain objectives. Energy system models following a micro-perspective can be distinguished
according to the underlying modelling approach that determines the type of dynamic representation of
technology diffusion and energy demand development over time [37]. Thus, bottom-up energy system
models can be categorised into simulation, optimisation and accounting models. Simulation models
represent energy demand and energy supply descriptively [38], taking into account microeconomic
decision-making and different drivers of technological diffusion. Accordingly, the design of simulation
models aims at reproducing a given system—e.g., the building sector—and studying its development
and transformation in the real world under different exogenous scenario variables. Optimisation
models designed for representing a micro-perspective are based on the same framework as optimisation
models on the macro-perspective described in Section 2.1.1. In contrast to simulation models, it follows
a prescriptive approach. The goal is to derive different cost-optimal system states considering different
market conditions and specific policy objectives. Applied on the micro-perspective, optimisation
models can also be described as decentralised optimisation, which minimises the costs or maximises
the utility of certain actors by focussing on the specific drivers for investment and consumption of the
specific sector in question. The development of energy demands and technology uptake rates derived
from simulation models can also be integrated as upper or lower boundaries for modelling technology
diffusion with optimisation models. Therewith, a cost-effective pathway for a specific technology
within the expected range of market uptake can be assessed. Accounting represents the third modelling
approach in this category. The main difference between optimisation and simulation models is the
exogenous choice of technology and market shares by the modelled user. Since technology diffusion is
not explicitly modelled, accounting models are not within the scope of this paper.

Model target: uptake and distribution of particular technologies within a specific sector; simulation

models aim at imitating the behaviour of real-world systems, whereas optimisation models focus on
finding the best solutions.

Typical input: depending on the model type (simulation, optimisation), scope and level of detail,

different inputs are required, e.g., techno-enviro-economic characterisation of existing and potential
buildings and technologies, socio-economic characterisation for actors/investors, market shares, energy
service demands (by end-use, energy carrier and/or specific technologies), energy prices, resource
potential, availability of energy infrastructure.

Output: demand structures for the consumption and use of energy carriers and technologies,

capex, opex, emissions, installed capacities, market shares.
Models: Invert/ee-lab for the buildings sector [37,39,40], TAM (TIMES Actors Model) [41–43],

TAM-Households [42], Residential Sector Demand Module National of the Energy Modelling System
(NEMS) [44,45], the Canadian Integrated Modelling System (CIMS) [46,47], REF-IF [48], FORECAST
model [49], EnergyPLAN [50].

2.3. Literature Overview Considering Social Science Findings and Inclusion in Techno-Economic Models

In the following, literature considering social scientific findings and their inclusion into ESM is
shown, following the categorisation of macro-perspective (ESOM and CGE) as well as micro-perspective
energy system models.
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2.3.1. Macro-Perspective

Energy system optimisation models: Few approaches combine social science approaches with

optimising energy system models. One area is the consideration of context scenarios as in [51–53].
The approaches to scenario building differ between story and simulation (SAS) and CIB (cross-impact
balance). SAS is a combination of narrative storylines and numerical simulation models. The CIB
approach first evaluates the interactions between different scenario descriptors to then ensure a set of
consistent parameters. The scenarios are composed partly of qualitative and quantitative descriptors.
Some of these quantitative descriptors can be put directly into the model and serve as coupling
descriptors [54].

A direct adaptation of an EMS was carried out in [9,55] to combine the aspects of local acceptance
for wind turbines and grid expansion with the RenPassGIS! model. A similar approach was used in
the 4Nemo project to integrate local acceptance factors in electricity market modelling [56]. In [8],
acceptance of renewable energies was indirectly integrated into the ENERTILE model using intangible
costs. The inclusion of social science findings into ESMs to include behavioural aspects to account for
investment, consumption and preferences are explored, for example in [57].

Previously, the connection between technology genesis, knowledge, technological progress and
market diffusion had already formed the basis for the further development of numerous energy system
models. One or two-factor learning in different spatial contexts was discussed, e.g., by [58]. The main
problem in the application is the requirement of a MILP format (mixed integer linear programming),
which leads to increased computational times or drastic reductions in complexity.

Computable equilibrium models: Computable equilibrium models comprise the most commonly

used methodology for cost-effectiveness analysis of energy and climate policy instruments.
The literature shows approaches for model coupling between a general equilibrium and an energy
system model as well as the inclusion of technological details in a CGE model framework. Refs. [16,59]
present a hybrid modelling method for including technological details in a CGE model framework
and show results for impacts of energy policies in the electricity market. A similar approach with a
technologically disaggregated representation of the electricity sector in general equilibrium models is
found in [25,60–62].

However, technological disaggregation is not limited to the electricity sector. Various studies focus
on the disaggregated representation of the transport sector. These include [63–70]. In the building
sector, the inclusion of technological details has not yet progressed as far, with the work of [71] being
the most relevant.

Other CGE models also include a more or less detailed disaggregated representation of household
energy demand. The SNOW-NO model [35] is a CGE model for Norway, which provides an empirically
estimated marginal avoidance cost curve to represent energy efficiency investments in the building
sector. It also contains approximate modelling of vehicles and energy sources used by households
to produce their mobility services, and a similar approach for buildings and energy sources used to
produce space heating services. However, the exact modelling is not further documented. A comparable
technology model is contained in the EMEC model, which additionally distinguishes between different
groups of households [29,30].

The GEM-E3 model adds durable goods on the consumption side in addition to general productive
capital, to adequately take the demand for energy services from households into account by considering
vehicle and heating types from a technology perspective. However, the documentation by [31] contains
little information on the modelling and calibration process. The IMACLIM-R model for France [32] is
one of the few known general equilibrium models that represent vehicles and buildings as durable
consumer goods in the provision of the energy services for mobility and space heating by households.
This is done in a separate module that transfers the respective initial endowment of production
factors (including vehicles and buildings) from one period to the next. Ref. [26] combines most of the
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approaches presented and analyses the energy demand of private households in Germany and its
significance for climate protection.

Model approaches that focus in particular on CGE modelling of energy efficiency improvements
and technical progress can be found in [26,71,72]. Refs. [73–77] examine distributional aspects of
climate policy with regard to households. Ref. [78] additionally addresses behavioural aspects. Model
approaches that focus in particular on CGE modelling of energy efficiency improvements and technical
progress can be found in [25,72,73]. Refs. [74–78] examine the distributional aspects of climate policy
concerning households. Ref. [79] additionally addresses behavioural aspects.

2.3.2. Micro-Perspective

Findings from social science are applied in bottom-up energy sector models mainly to explicitly
model investment decision behaviour and to identify non-economic barriers and stakeholder specific
factors influencing the diffusion of technologies and technology choice. The different approaches
in simulation models included (1) the integration of empirical research from discrete choice or
conjoint experiments, (2) surveys based on socio-psychological theories and (3) representation of
decision-making based on decision heuristics and bounded rationality [37]. Discrete choice analysis
(DCA) is a widely used methodology for describing consumer decisions and quantifying decision
variables [80]. Since energy sector simulation models often apply the logit-function to model market
share distribution, the integration of empirical results from choice experiments are a natural choice.
However, only a few studies have shown a direct link between the design and results of a choice
experiment and an energy sector model. Within the European project CHEETAH, results from a DCE
have been integrated into the Invert/ee-lab model [81].

Some approaches draw on socio-psychological theories to describe consumer behaviour and
technology choice as a psychological process based on individual perception, habits and norms [82–84].
A theoretical framework for modelling the investment decision behaviour of residential building
owners’ technology diffusion of heating systems and efficiency measures, based on the Theory of
Planned Behaviour (TPB), has been suggested by [85].

The third category is related to results from social science studies that question the assumption of
rationality and describe the decision-making process as a series of different rules or heuristics that are
applied depending on the decision situation and degree of information [86–88]. Integration of findings
on bounded rationality heuristic decision-making as well as psychological behaviour theories and
social interaction in energy sector simulation models can be realised by an agent-based modelling
approach. Examples of agent-based modelling approaches explicitly integrating these findings in
technology diffusion models are presented in [37,89,90].

Optimisation models aim to identify the least-cost solution to overarching objectives, and while
some investment and other behavioural aspects have been included, the aim is not to reflect the
behaviour of individuals, as is the case in simulation models. Ref. [56] highlights the most common
ways behaviour has been included in micro-ESOMs to date, emphasising that behaviour is often
limited to investment and consumption, reflected in models through disaggregation, and varying
discount and hurdle rates—applied globally or towards specific sectors or technologies. Optimisation
models aim to identify the least-cost solution to overarching objectives, and while some investment
decisions and other behavioural aspects have been included, the aim is not to reflect the behaviour of
individuals, as is the case in simulation models. Ref. [57] highlights the most common ways behaviour
has been included in micro-ESOMs to date, emphasising that behaviour is often limited to investment
and consumption, reflected in models through disaggregation, and varying discount and hurdle
rates—applied globally or towards specific sectors or technologies.

2.3.3. Summary

In summary, the literature review shows that from the micro-perspective models, different
approaches to integrating behaviour are already considered. From the macro-perspective ESOM and
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CGE models, the level of technological detail is already being increased in some studies, so that a
convergence between market behaviour and technology is taking place. In the areas of ESM from
a macro-perspective, it becomes clear that too little attention has been paid to the social sciences,
and only individual aspects have been focussed on, such as market distribution, local acceptance or
scenarios based on context. This is mainly because the original purpose of the models was to find the
cost-optimal solution for the energy system. In the future, however, social boundaries should also be
considered in addition to the technical limits of the solution space.

3. Agent-Based Models to Study Technology Genesis and Policy Acceptance

There are social and behavioural factors that are determined by complex and dynamic interrelations
between actors. In such cases, it can be beneficial to use dedicated agent-based models to simulate
and analyse the underlying processes. In the following, two models will be presented, since these
areas have hardly been used in energy system analysis up to now, but play an important role for
transformation processes and will be taken up again in the following section.

3.1. Modelling Socio-Political Acceptance

The socio-political acceptance of political interventions (e.g., acceptance of regulations, taxes
or subsidies, information campaigns) is one example of a social phenomenon that entails complex
and dynamic interrelations between actors. Citizens are those who finally determine whether a
policy intervention is accepted or not—however, there is a variety of actors who influence the public
perception of policy interventions and interpret and frame the outcomes of public opinion formation
(e.g., media, opinion leaders, lobby groups, political parties, etc. [91]).

Model target: in this domain, the goal is to simulate and analyse complex and dynamic relations

between individual and collective actors that determine the emergence of socio-political acceptance for
different kinds of policy interventions.

Typical input: simulation of social processes within society from different empirical sources, such

as input from quantitative surveys (including choice and vignette-experiments as well as ego-centric
network analyses), qualitative formats like interviews and focus groups, as well as information from
public discourse (analyses of statements in social media, newspaper articles, press releases, etc.).

Output: information about the assertiveness of different policy options—linkable to

techno-economic models as well as empirical analyses of issues outside the policy models’ scope,
identification of policy options that can have a strong impact on the overall CO2 emissions (output of
techno-economic models) and that will likely be well received by citizens (output of policy acceptance
models) as well as by investors who actually decide about the uptake of sustainable technologies
(output of additional empirical analyses).

Models: One approach to simulate and analyse such processes is currently under development;
the PANDORA-model (Policy AcceptaNce, Diffusion of Opinions and Relations among Actors).

3.2. Technology Genesis Model

Another example of a complex social phenomenon is knowledge generation and exchange, which is
the basis for innovation and, thus, technological development and usability in energy systems [92–94].
Cooperation is key between actors like individuals, firms, organisations and networks [95], e.g.,
in research, education and production. Measures designed to strengthen knowledge-related processes
in these areas cannot be captured by current energy systems modelling.

Model target: simulation of knowledge dynamics in innovation networks to assess the effects of

financial, procedural and structural measures on innovation activities.
Typical input: data to calibrate the model concerning real actors in the field, including statistical

and structural information of innovation networks as well as behaviour in terms of knowledge
generation and exchange, as well as production processes on the micro-level. Typically, the input
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is gained from a mixed-methods approach including patent analysis, project collaboration analysis,
publication analysis, expert workshops, qualitative interviews, and statistical data. Furthermore,
revenue potentials or demand of technologies with specific characteristics are required, ideally as
model inputs from ESM.

Output: typically represents numerous indicators of the innovation system, simulated based on

the assumptions taken. Impacts of politics on innovation activity can be assessed by comparing these
indicators with respective assumptions for a predefined focus, like measuring innovation dynamics.
Multiple runs considering relevant variations in parameters for each set of assumptions and a specific
analysis of the results lead to correlations, which can then be considered in energy system models.

Models: an approach to cover these aspects represents the agent-based Simulating Knowledge
Dynamics in Innovation Networks (SKIN) model [96]. It has been adopted for lithium batteries as
key energy technologies, resulting in the SKIN-Energy version. A more broadly applicable version is
currently under development [97,98].

4. Consideration of Sociological and Behavioural Psychological Aspects in Energy
System Models

As a result of an interdisciplinary discourse among energy system modellers, social scientists,
psychologists, economists and political scientists, the following social science factors were identified
that should be considered in ESM: investment behaviour, user behaviour, local acceptance, technology
genesis and political framework conditions. In this section, these aspects are analysed under the criteria:
(1) motivation for consideration in ESM, (2) empirical data collection and (3) methods/possibilities for
integration in ESM (macro- and micro-perspective). The methods for integration are differentiated
into direct model input, monetarisation and soft-linking with other models. Soft-linking means that
no direct interface or model iterations are performed, but rather the model output of one model is
translated into the model input of the ESM.

4.1. Technology Adoption: Investment Behaviour

Table 1 provides an overview on the market acceptance factors that should be considered in ESM
from a macro and micro-perspective (Section 4.1.1), empirical methods for data acquisition (Section 4.1.2),
as well as the methods for the integration of investment behaviour into ESM (Section 4.1.3). The table is
not to be understood line by line. The connections between the aspects to be considered, data collection
and model integration result from the explanations in the text.

Table 1. Overview of objectives, methods of empirical data inquiry and possibilities to integrate aspects
of investment behaviour into energy system models (ESMs).

Objective Measurement/Inquiry for
Relevant Data

Integration into Energy System Models

Macro-Perspective Micro-Perspective

Macro-perspective:
Aggregated investment
behaviour (future realistic
market shares)

Quantitative:
Surveys, discrete choice
experiment (DCE), conjoint
experiment latent class
analysis (clustering)

Monetarisation:
Intangible costs
(willingness-to-pay, WTP)

Monetarisation:
WTP/ Discount rate for
technologies and actors,
hurdle rates

Micro-Perspective:
Actor type, individual utility,
demographics, attitude,
decision situation,
multi-stakeholders
decision etc.

Qualitative:
Focus groups, interviews,
participatory observation etc.

Direct Input:
Upper and lower boundaries
for technologies; Technology
exclusion

Direct Input
Decision criteria, (heuristics)
weights, partial-utilities for
decision criteria,
technologies and actors,
actor specific budget/time
constraints

Soft-linking:
Technology diffusion model

Soft-linking:
Technology diffusion model
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4.1.1. Motivation

A key component of the active transformation of the energy system to a climate-neutral system
is the actual deployment of novel, more efficient and environmentally-friendly technologies. Based
on [99], market acceptance and, thus, the process of market adoption of an innovation is a form of
social acceptance. Ref. [100] provides an overview of social science determinants that influence the
investment decisions of private and corporate actors. According to economic theory, the investment
behaviour of a consumer can be explained by an increased utility compared to the total cost of
ownership (TCO) of the consumer product [101]. Besides the primary utility, e.g., the generated heat
by heating technologies, the utility created by a product can also be increased or decreased by other
influences, e.g., the reduction in CO2 emissions (e.g., due to environmental consciousness) or the
consumer’s image. Thus, this additional utility is crucial to understand and to model the adoption
of novel technologies, especially for private consumers. However, personal preferences concerning
additional utilities can be diverse and are more difficult to establish than preferences relating to
monetary attributes of an investment decision. Thus, they are currently more often neglected in
techno-economic modelling [102]. Besides, the information sources available to the customer as well
as the customer’s capacity to gather and process this information (e.g., restricted due to a lack of
time or competence) are crucial to understanding the perceived value of different technology options.
From a micro-perspective, it is, therefore, useful to consider individual factors that influence the
investment decision, such as individual utility, demographics, attitudes, decision situation as well as
multi-stakeholder decisions; while, at the macro level, it is important to consider the result of individual
decisions in an aggregated form, for example through possible realistic market shares.

4.1.2. Empirical Data

Investment behaviour such as choosing to invest in a renewable heating technology instead of
another heating technology is often described by analysing the preference structure of people (e.g., [103]).
Before using quantitative multivariate methods to analyse preferences, a crucial question is often what
attributes (or characteristics) of a product or choice situation potentially influence these preferences.
The selection of attributes for the preference analysis can be chosen from an ad-hoc collection compiled
by researchers designing a quantitative analysis of preferences, or by a qualitative analysis based
on (expert) interviews or focus groups with the population of interest (e.g., [104]). Employing the
latter approach can provide the additional advantage of clarifying theoretical considerations for
questionnaire design including the selection of certain attributes for DCEs to reduce the risk of failing
to capture relevant aspects of decision-making. Quantitative results regarding preferences can be
translated into monetary values by assessing the (marginal) willingness-to-pay (WTP). For established
technologies on the markets, those values can be derived from revealed preferences through existing
market purchase data (e.g., [105]). To measure the preferences regarding new technologies entering
the market, experimental approaches based on stated preferences are often applied. In particular,
methods like DCE, where the respondent chooses between different products with different levels of
the same attributes, are often used [101]. The results for the preference characteristics can be evaluated
individually as, e.g., in [106,107], or used in other models such as diffusion models, e.g., [108,109].

As preferences can be diverse, socio-economic and socio-demographic information as well
as, for example, (environmental) attitude are often surveyed in questionnaires to identify clusters
(e.g., [103]). To do so, quantitative methods like latent class analysis can be applied. In addition,
qualitative methods, such as focus groups, participatory observation or interviews, can be used to get
deeper insights into processes that underlie the formation of different preferences.

4.1.3. Model Integration

Macro-Perspective: The results of macro ESM provide an understanding of the technologies that

could be used to realise a climate-neutral energy system. In ESM, the costs of the system are optimised
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and, at the same time, CO2 reduction targets are set. This can lead to a result in which, for example,
almost all heating systems are replaced with heat pumps and the majority of buildings have been
renovated. However, the actual implementation of this is the result of individual heterogenous
investment decisions of private and corporate actors. Individual investment decisions and their
influencing factors such as attitude or subjective norm are not represented in macro-perspectives
optimising ESM. Great differences in investment behaviour have been shown since there is usually
no distinction made between investor groups and their demographics, personal variables such as
attitude, norm, conviction and their decision-making behaviour [110]. This leads to a gap between
the results from macro-perspective and micro-perspective models due to the differentiation in the
definition of the optimum of the system vs. investment behaviour, which ultimately leads to different
system designs. One possibility to reduce the gap between investment behaviour and techno-economic
overall system optimisation is the use of intangible costs, which can be collected as WTP more in
the context of DCE and, thus, allow direct consideration in the ESM. Another possibility to depict
investment behaviour in the macro-perspective model is the use of time-resolved upper and lower
expansion boundaries and technology exclusion. The basis for this can be the results of other models
(such as technology diffusion models using agent-based simulation, discrete choice models, system
dynamics or innovation diffusion models [102]) or the application of an S-curve according to the theory
of innovation diffusion [111]. The integration of more realistic investment behaviour in ESOM may
help to quantify the consequences for other sectors; for example, examining which CO2 reduction
requirements are shifted to the transport sector if insufficient energy renovation rates or reductions are
achieved in the building sector. Employing a DCE and the simulation of the diffusion of alternative
drive concepts based on a discrete choice model, it was possible to show that if fuel cell electric vehicles
(FCEV) are available at the market, they will achieve certain market shares even if direct electric
vehicles are the more cost-effective alternative [112]. In [53] it was, therefore, assumed that a certain
proportion of FCEVs needs to be met by the ESM REMod to draw a more realistic future scenario.
Ref. [113] takes an approach to soft-link a system dynamics diffusion model with TIMES to provide
more realistic market shares for FCEV in the vehicle sector. Firstly, it was tested to adjust costs in the
ESM, and secondly, to set market shares in the ESM, with the conclusion that the second approach is
most useful. Other applications of this modelling approach have been made in modal split adjustments.
The basis of the work of [114] is an agent-based model, while [115] builds on a GIS-based analysis.
The two studies each link these pre-analyses with a TIMES model for Denmark and the region of
Gauteng in South Africa, respectively.

These improvements are also included in CGE models, where the inclusion of technological details
is state-of-the-art. As a result, upper and lower expansion boundaries and technology exclusion are
possible modelling approaches for CGE models, too. Additionally, the specification of heterogenous
preferences captured in the utility functions enables CGE modellers to depict certain aspects of
consumer behaviour and attitude factors. Here, environmental, health or time-use factors represent
possible variants as well as higher-level welfare concepts such as happiness, well-being or the economy
for the common good. The more empirical knowledge about diffusion and investment processes is
available, the more precise the assumptions can be made for ESOM or CGE. This concerns, in particular,
investment cycles and technology choices.

Micro-Perspective: Technology adoption from the micro-perspective follows either the simulation
or the optimisation methodology and takes into account the adoption pathways for different actors or
actor groups. These differences in investment and consumption behaviour by different household
categories have been described through the incorporation of behavioural economics [116]. Similarly,
different discount rates or intangible costs can also be applied to specific actor groups within a model
or sector to express the variation of purchasing and consumption behaviour [57,117]. Results from
discrete choice models have also been applied to provide insights about the projections of technology
adoption through, for example, discrete choice models [57,118]. The WTP in consumers has been
addressed through disaggregation by income group to account for differences in consumption and
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affordability [42,117,119,120]. Efforts have been made to include non-technical influences on investment
choices; for example, the true costs of modal shifts in the transport sector, which highlights the hidden
costs of mode choice [121]. Different investment and consumption behaviour has also been reflected
through disaggregation, where different groups or sub-sectors will be modelled with different energy
demands, available technologies and discount rates [122–124]. In addition to disaggregation, discount
and hurdle rates, the TAM-Households model also makes use of budget constraints to reflect variations
in the investment and consumption behaviour of different actors depending on their socio-economic
circumstances [42]. Budget and time constraints are factors influencing investment and consumption
behaviour of various actors in the model, and have additionally been considered, particularly for
households [42,125] and transport [41,126]. This caps the available budget for investment and/or
consumption for specific actors and thereby provides the cost-optimal technology choices by a more
diverse share of actors. Expressing time constraints reflects the individual’s willingness to compromise
on comfort towards more individualised or public solutions, i.e., cars or public transport.

4.2. Local Acceptance for Technologies

Table 2 gives an overview on the aspects that should be considered in techno-economic macro
and micro-perspective energy system models concerning local acceptance (Section 4.2.1), how these
aspects can be measured (Section 4.2.2) and how they can be integrated into ESM from the macro and
micro-perspectives (Section 4.2.3).

Table 2. Overview of objectives, methods of empirical data inquiry and possibilities to integrate aspects
of local acceptance into energy system models (ESMs).

Objective Measurement/Inquiry for
Relevant Data

Integration into Energy System Models

Macro-Perspective Micro-Perspective

Macro-level:
Local socially-accepted
technology potential
(saturation-level)

Quantitative:
Survey, DCE, experimental
and quasi-experimental
field studies

Monetarisation:
Intangible costs
(willingness-to-accept)

Direct Input:
User constraints
(user-specific discount
rates or market shares,
hurdle rates, market
shares)

Micro-level:
Individual factors (not in
my back yard, NIMBY),
Local social factors,
Socio-political factors

Qualitative:
Focus groups, interviews,
discourse analyses,
participatory observation
etc.

Direct Input:
Regional upper and lower
boundaries for technologies;
Technology exclusion

Soft-linking:
Micro model of local
acceptance

Soft-linking:
Micro model of
local acceptance

4.2.1. Motivation

The specific design and speed of transformation of energy systems are strongly influenced by their
social evaluation. Social evaluations are complex and, e.g., the authors of [99] propose to differentiate
between socio-political acceptance, market acceptance and local acceptance. The focus of many
empirical studies on conflicts and questions of acceptance of power system transformation is on local
acceptance problems, for example, in grid expansion or the construction of new wind farms [127]
or on the acceptance of CO2 storage sites [128]. The corresponding research has mainly dealt with
the NIMBY (not in my backyard) effect (e.g., [129,130]) and was guided by the assumption that the
local evaluation and the overall social evaluation of a technology are often contradictory for “selfish”
reasons. On an individual micro level, local acceptance is dependent on individual factors like attitudes,
landscape aesthetics, additional costs (benefits), knowledge and trust. Yet, conflicting structures and
issues of acceptance are anchored at many levels, and as a whole go far beyond local resistance [131].
More recent research points to the connection between political and social acceptance on the one
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hand, and local acceptance on the other. For example, local conflicts, which are often (too quickly)
categorised as NIMBY, can turn out to be conflicts in which actors reject a transformation pathway
that focuses exclusively on the expansion (and, thus, large land consumption) of renewable energies
instead of focusing on electricity savings or energy efficiency measures [132]. Other research looks
at local conflicts in detail and deals with matters of distributive justice, perceived procedural justice,
etc. They address social factors that explain local acceptance. In any case, problems with acceptance
can lead to certain technological options being eliminated or becoming significantly more expensive,
thus having a major impact on the transformation process as they influence the local socially-accepted
technology potential on a macro level.

4.2.2. Empirical Data

For the analysis of local acceptance of energy technologies, social science can draw on quantitative
and qualitative methods. Quantitative methods such as surveys, quasi-experimental or experimental
field studies and DCEs are suitable for analysing causal or correlational relationships between factors
that inhibit or increase the acceptance of technology and the relative importance these factors play
in decision-making. Data collected in this way can be integrated via direct interfaces into energy
models, for example, when investigating to what extent an increase in distance regulation or the
implementation of local citizen participation measures increases the acceptance of wind turbines [8].
At the same time, unravelling the complexities of these issues is not trivial. The use of questionnaires or
surveys takes a lot of imagination or experience with a certain technology to be able to visualise what is
meant by 100 m, 500 m, etc., and then give reliable information about ones’ behaviour when confronted
with such a hypothetical scenario. Doing so through means of experimental or quasi-experimental
field studies is often more difficult and resource-intensive than applying survey or questionnaire
methodologies, but also yields more reliable information about the actual behaviour of participants and
the causal—instead of correlational—relationships between factors (e.g., [133]). Qualitative methods
(focus groups, interviews, discourse analyses, participatory observation) are used to understand
and explore acceptance problems rather than to causally investigate influencing factors. In these
methods, text materials (documents, recorded observations, arguments recorded and transcribed
during interviews or focus groups) are coded and interpreted by the researcher. Often, a combination
of qualitative and quantitative methods is used in which knowledge from qualitative analyses is
employed to design and plan quantitative methods. Interviews are often conducted first to gain a
better understanding of the object of investigation and then, in a second step, a questionnaire, a DCE
or a representative survey is designed.

4.2.3. Model Integration

Macro-Perspective: According to the results of cost-optimising ESOM, wind power plants and

transmission grids, which face the majority of local acceptance problems [55], are central technologies
in the future energy system [134]. Within the ESOM, the costs as well as the potentials, or so-called
cost–potential curves, of the technologies are given as input. The model result is the cost-optimised
expansion of the technologies and their regional distribution. This may result in a system where,
on the one hand, the expansion burden is higher than socially acceptable and, on the other hand, some
regions are more burdened than others because their techno-economic potential is highest. The protests
and citizens’ movements against wind power or transmission grids show that this assumption of
cost-optimal distribution and expansion is biased. One could assume a theoretical saturation limit of
technology acceptance. On the one hand, increasing costs or a decline in the annual installed capacity,
which may arise if projects are not realised or are delayed due to protests or complaints, need to be
taken into account if the expansion is above the saturation limit. On the other hand, the costs or
additional technology capacity arising from participation or compensation measures would have to be
taken into account to push the saturation point of technology acceptance upwards.
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Possibilities to address the issue of local acceptance in energy system models from
the macro-perspective are, for example, the consideration of intangible cost, quantified by
willingness-to-accept [135]. The potential of technology can be reduced or local upper and lower limits
can be set in the ESM to take into account the accepted technology saturation, which can be quantified
based on empirical studies. This approach can also be applied for technology-based CGE models (see
Section 2.3.2). It should be noted that “saturation” depends on personal factors such as attitudes and
norms as well as regional conditions and is very heterogeneous. For technologies with considerable
local acceptance problems, technology exclusion can also be implemented in the model. Another
possibility is to soft-link with a model addressing local acceptance from a bottom-up perspective.

Examples for the integration of local acceptance in energy system models are shown in [9]. In the
context of this work, the wind expansion in the electricity market model renpassG!S was optimised
based on an empirically determined local burden level. In [55], the time delay of the transmission
network expansion was determined with the same model. In [8], issues of local acceptance of renewable
energies were integrated into the ENERTILE electricity market model via intangible costs. Ref. [53]
considered aspects of the (un-)acceptance of major infrastructural changes (such as wind onshore
expansion, transmission grids and overhead line trucks) in the energy system model REMod by limiting
the potential of these technologies or excluding technologies (overhead line trucks).

Micro-Perspective: From the perspective of the investor, as designated in micro-perspective

models, acceptance of technologies can be described through exogenously determining discount rates
or market shares (i.e., user constraints), which can be applied to different investors or investor groups.
Indirect factors that influence the local acceptance of technologies could also include parameters such
as recommendations from technicians or relations, or information campaigns. The influence of these
factors can be included in optimisation factors through the addition of a lower discount rate to reflect a
lower hurdle to investment. Direct factors include defining specific market uptake shares for specific
users, e.g., homeowners, through user constraints or profile-specific discount rates. These limits can
also be set by soft-linking with a bottom-up model.

4.3. Behavioural Aspects Regarding Technology Use

Table 3 gives an overview on the aspects that should be considered in techno-economic macro
and micro-perspective energy system models concerning user behaviour (Section 4.3.1), how these
aspects can be measured (Section 4.3.2), and how they can be integrated into ESM from the macro and
micro-perspectives (Section 4.3.3).

Table 3. Overview of objectives, methods of empirical data inquiry and possibilities to integrate
behavioural aspects into energy system models (ESMs).

Objective Measurement/Inquiry for
Relevant Data

Integration into Energy System Models

Macro-Perspective Micro-Perspective

Macro-perspective
Consideration of realistic user
patterns (regional differences,
simultaneity)

Quantitative:
Measurement, generic
profiles, Surveys
(willingness-to-pay, WTP;
willingness-to-accept, WTA)

Soft-linking model coupling:
Demand model

Soft model coupling:
Demand model

Micro-Perspective
Cluster (actor)-specific user
behaviour, socio-demographics,
attitude, norm,
contextual/situational factors of
behaviour, lifestyle

Monetarisation:
Intangible costs (WTP,
WTParticipate, WTA)

Direct Input
Consumer-specific time series,
Actor-specific preferences
(willingness-to-pay, WTP;
willingness-to-participate,
WTParticipate;
willingness-to-accept, WTA)

Macro and Micro-perspective
Convertibility of consumer behavior
(grid-friendly behaviour, rebound
effect, sufficiency)

Direct Input:
Model restrictions,
Adaption of end energy
demand, price elasticities
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4.3.1. Motivation

User behaviour determines the final energy demand and is, therefore, the starting point for energy
system analyses. However, user behaviour is actor-specific and results from individual user behaviour
(households/transport), but also industrial production and distribution as well as commercial trade
and services. Within the integration of social sciences in ESM, two overarching factors play a special
role: first, the inclusion of realistic demand profiles (temporal and regional). On a micro level, these
are modelled with individual factors such as socio-demographics, attitudes, norms, lifestyle and also
circumstances or context factors [136]. On a macro level, these factors are represented in aggregated
form with realistic profiles. Second, the change of user behaviour, where aspects such as rebound effects,
sufficiency, or grid-friendly behaviour play a role and where it is essential to identify factors and
interventions that can effectively and reliably change behaviour (e.g., [137]). Of particular interest are
aspects such as which technologies are used by whom and when, as well as the willingness-to-accept
(WTA) or to adapt their demand according to, e.g., external controls of operation schedules for
home storage systems or electrical vehicles to facilitate grid-friendly demand (e.g., [138]). This aspect
becomes more relevant in a future energy system that is characterised by increasing shares of fluctuating
renewable energy sources (e.g., [136]).

4.3.2. Empirical Data

User behaviour can be described by constructing individual user profiles. This can be done
based on measuring loads resulting from a user interacting with an end-use technology or based on
developing synthetic profiles from other sources on user behaviour such as time-use data (e.g., [139])
or more aggregate consumption data. Concerning household technologies, using measurement
campaigns of technologies is often a resource-intensive research approach, but it has the advantage
of measuring actual demand profiles as they occur in field settings. Depending on the research
objective, user profiles can be applied individually or can be aggregated into generic profiles for
different user groups. The profiles can have different temporal resolutions and can be measured
over different periods. Ref. [105] collected and aggregated 415 individual hourly electricity loads of
homeowners’ consumption over 12 months. The resulting load profiles were utilised to evaluate the
potential for photovoltaic and battery systems under consideration of seasonal effects. Such measured
or synthetic profiles can be aggregated to a macro level to account for a region or user group by
scaling with appropriate factors (e.g., number of users) and applying stochastic methods. Ref. [140]
has modelled the fuel demand profiles for hydrogen vehicles based on the refuelling behaviour of
conventional vehicles measured at two filling stations. For a general application of those profiles,
a stochastic algorithm has been applied to the time series to receive more realistic profiles without
repetitive patterns. Besides, quantitative survey approaches can also be employed to query user
behaviour. Especially for novel technologies and the changing energy system, it can be an appropriate
approach to describe to what extent users would be willing to adapt their current behaviour, e.g.,
with a monetarised approach to access the willingness-to-pay and accept (WTP, WTA), e.g., incentives
for flexibility provision. For example, Ref. [141] surveyed German households to measure WTP and
WTA regarding the security of supply.

4.3.3. Model Integration

Macro-Perspective: The temporal demand for final energy in households, transport, industry

and commercial trade and services is the basis of the energy balance in energy system models, whose
premise is to meet the demand, to shift it by flexibility options or to reduce it through efficiency
measures. However, the availability of demand data is only given for partial areas. Therefore,
model coupling with bottom-up demand simulation models such as MAED-2 [142], HERMES [143],
SynPro [144,145] or Forecast [49] are often used to calculate heating or industrial loads depending on
influencing parameters such as weather or GDP and different user behaviour. User behaviour also
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depends on other factors such as context, lifestyle, social milieu, attitudes, norms, demography, etc.
Correlations between final energy demand over time and personal variables can only be considered in
energy system models to a very limited extent and are usually covered through a separate demand
simulation. The time horizon of energy system models has a long-term character (mostly 2050), so the
change in temporal and absolute demand is an important model input [134].

Concerning flexibility, a key assumption in the ESM is the proportion of the population that accepts
external controlling of technologies to ensure network service operation (Willingness-to-participate
(WTParticipate), Willingness-to-accept (WTA)). This concerns technologies such as electric vehicles,
PV home storage, heat pumps or other household appliances. This can be realised either with model
restrictions, where, for example, 30% of the population makes the vehicle available for vehicle-to-grid
and grid-to-vehicle applications, [146], or with intangible costs.

Another important aspect regarding energy demand is rebound effects of energy efficiency
measures, which has been empirically demonstrated [147]. This effect can be implemented in energy
system models through reduced demand (adaption of end energy demand). However, the exact
quantification of the effect is subject to uncertainty and also depends on the efficiency measures in
question [148]. So far, ESMs have often assumed a constant energy demand, taking into account energy
efficiency measures.

The change in demand concerning prices can be quantified using price elasticities. According
to [149], long-term elasticities are based on a change in the capital stock, whereas short-term elasticities
are based on short-term consumer reactions, which in principle occur without a change in the capital
stock. Long-term price elasticities in the energy sector, which are relevant for use in energy system
models, are typically related to individual final energy carriers and their respective applications.
For broader use of this approach, long-term price elasticities concerning different forms of energy
service demands depicted in the models would have to be determined.

However, the importance of sufficiency in modelling is increasing [150]. Sufficient behaviour
leads to a reduction in final energy demand. Based on empirical data or assumptions on final energy
demand, absolute demand can be adapted, as shown in [53] in the sufficiency scenario.

Micro-Perspective: Variances in consumption behaviour included from the micro-perspective

are typically defined through disaggregation of energy demands by the classified consumer groups
as a reflection of the drivers of demand for that specific subgroup [116]. These demands can be
projected into the future for each defined consumer based on assumptions for either the shift in the
number of households in that group or by changing the demand figures based on adjustments in the
demand profile (e.g., due to rebound through increased energy efficiency, increased demand from
higher appliance use, decrease in demand due to energy efficiency, etc.) [119,123].

4.4. Technology Genesis

Table 4 gives an overview on the aspects that should be considered in techno-economic macro
and micro energy system models concerning technology genesis, how these aspects can be measured
and how they can be integrated into ESM from the macro and micro-perspectives.
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Table 4. Overview of objectives, methods of empirical data inquiry and possibilities to integrate
technology genesis into energy system models (ESMs).

Objective Measurement/Inquiry for
Relevant Data

Integration into Energy System Models

Macro-Perspective Micro-Perspective

Macro-level:
R&D developments, time
of technology genesis

Model
Economic micromodel,
Technology genesis model

Direct Input
Technology parameters,
annual upper and lower
boundaries for technologies

Direct Input
Technology parameters,
annual upper and lower
boundaries for technologies

Micro-level:
Political measures aiming
at the (faster) development
of new, innovative
technologies, Knowledge
processes

Quantitative:
Statistical data (patent
analysis, project
collaboration analysis,
publication analysis)

Soft-linking:
Technology genesis model,
economic micromodel
(dynamic learning curves)

Soft-linking:
Technology genesis model,
economic micromodel
(dynamic learning curves)

Qualitative:
Expert workshops,
interviews etc.

4.4.1. Motivation

The dynamics in the development of new technologies significantly influence the potential
dynamic of meeting targets as well as the necessary composition of technologies in the energy
system. This has a strong influence on results from energy systems analyses. The fundamental
innovation processes driving technology development (R&D) are highly complex and non-linear [151].
Furthermore, they are characterised by a high number of systems involved, including systems of
techniques, economics/markets, production, knowledge and social entities. Furthermore, implementing
such technologies requires knowledge and educational management to enable society to deal with
new technologies. From a macro-perspective, R&D developments should be considered in terms of
techno-economic developments and the duration of the technology genesis. From a micro-perspective,
it is important to include both knowledge processes and the impact of policy measures towards new
innovative technologies.

4.4.2. Empirical Data

One possibility to integrate innovation into ESM is the integration of dynamic learning curves
(e.g., [152]). These are outputs of economic micromodels. Another possibility is the (soft) linking
with technology genesis agent-based models, as described in Section 3.2. Such genesis models can be
calibrated on two levels: on a micro-level of individual behaviour and characteristics of the agents
and on a meso level according to the macroscopic empirical occurrence of innovation structures.
To get as much information as possible about innovation dynamics in a sector, often mixed-methods
approaches are applied. While micro behaviour can be implemented in genesis models via algorithms
reflecting findings in the literature about processes of research, development, production, collaboration,
and knowledge exchange, statistical data and data of cooperation are needed to characterise agent-types
and to try to reproduce observed constellations in innovation networks. Additionally, interviews and
expert workshops can be used to focus on questions relevant in practice and to configure the model
most realistically. Moreover, the model behaviour and results are compared to real circumstances
concerning impacts of measures via what-if experiments and typical innovation dynamics [153,154].
Furthermore, revenue potentials or demand for technologies with specific characteristics is required,
ideally as a model input from ESM.

4.4.3. Model Integration

Macro-Perspective: Innovation and innovation processes form the basis of the availability of

technology and its techno-economic performance, but also the provision and adequate processing and
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transfer of knowledge about this technology and its applicability. This plays a decisive role in energy
system models since innovative technologies and further developments of existing technologies are set
as model inputs. Knowledge about innovation processes for individual technologies, such as large heat
pumps, direct air capture of CO2 or Carnot batteries, enables this to be taken into account in the energy
system model in an appropriate form. The knowledge about innovation and knowledge diffusion can
be quantified by empirical work or implemented by direct model integration or model coupling with
technology genesis models [155]. Concerning direct model integration, CGE models typically include
knowledge as an additional factor in the production factor [25,156].

Agent-based models can be applied to assess the influence of knowledge generation and flows on
innovation dynamics [97,98]. A soft-linking of such models with energy system models allows the
consideration of measures orientated around knowledge and education aimed at new technologies to
foster the energy transition. Output parameters that can be used in ESM for different measures and
framework conditions include changes in the time of knowledge diffusion and technology availability,
and the associated costs.

Micro-Perspective: From the micro-perspective, innovative technologies are considered in models

through their availability to the actor groups at a certain point in time when they come on the market.
These technologies will be taken up in optimisation models through their cost-competitiveness.

Empirical studies have shown that the role of intermediaries (such as technicians, handyman)
plays a major role in technology adaptation [157,158]. They are often not broadly trained to provide
adequate advice to the potential adopters of innovative technologies like heat pumps. There is the
possibility of coupling a techno-economic bottom-up model such as Invert/eeLab with a technology
genesis model such as SKIN to map the influence of knowledge transfer in the field of intermediaries
and thereby do justice to the inclusion of knowledge dissemination.

4.5. Socio-Political Framework Conditions

Table 5 provides an overview on the aspects that should be considered in techno-economic macro
and micro energy system models concerning socio-political acceptance (Section 4.5.1), how these
aspects can be measured (Section 4.5.2) and how they can be integrated into ESM from the macro and
micro-perspectives (Section 4.5.3).

Table 5. Overview of objectives, methods of empirical data inquiry and possibilities to integrate
socio-political acceptance into energy system models (ESMs).

Objective Measurement/Inquiry for
Relevant Data

Integration into Energy System Models

Macro-Perspective Micro-Perspective

Micro and Macro level
Political strategy (measures)
for existing technologies

Quantitative:
Laws, Surveys, DCE,
Vignette-experiments,
ego-centric network
analysis, etc.

Direct Input
Measures as Hard
constraints: bans,
standards, new
construction, standards,
compulsory connection,
incentives

Direct Input
Measures as Hard
constraints: bans,
standards, laws, new
construction, standards,
compulsory connection,
incentives

Micro-level
Socio-political acceptance

Qualitative:
Interviews, focus groups,
web-scraping, natural
language processing, etc.

Direct Input
Context scenarios

Direct Input
Context scenarios

Model:
Socio-political acceptance
model

Soft-linking
Socio-political acceptance
model

Soft-linking
Socio-political acceptance
model

4.5.1. Motivation

Energy system models can account for different socio-political framework scenarios by assuming
different learning curves and cost degressions over time (e.g., to account for the dynamics of technology
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development) or other technology parameters (e.g., to account for a change in the public perception
of technology) as well as by defining model restrictions (e.g., to account for binding regulations like
technology bans). With such approaches, it is possible to estimate the range of different dynamics in the
transformation of the energy system, depending on different socio-political conditions. Besides, such
approaches make it possible to estimate the range of different dynamics in the transformation of the
energy system depending on different socio-political conditions. However, it remains undetermined
how realistic the occurrence of different socio-political scenarios is or how policy measures should be
designed to be effective and efficient. The combination of energy system models with analyses that
provide insights into such questions would be of great practical importance.

4.5.2. Empirical Data

There are several approaches for empirical analyses of the socio-political framework conditions.
These include different forms of quantitative surveys (e.g., direct measurement by Likert- and
rating-scales, discrete-choice- and vignette-experiments or ego-centric network analyses) as well as
qualitative approaches (e.g., interviews and focus groups) of the public opinion regarding different
political courses of action [91]. In addition, there are also methods to analyse public discourse regarding
different political options. These include qualitative or quantitative (e.g., by web-scraping and natural
language processing and/or network analyses) content analyses of political documents, news in media
portals or comments in social-media (see e.g., [159–163]).

4.5.3. Model Integration

Macro-Perspective: The political framework and its development play a significant role in energy

system models. Although ESOMs cannot directly, or can only partially, reflect the effects of single policy
measures, they are considered implicitly, as they influence several model parameters. Regulatory
measures can be taken into account in ESM by excluding certain technologies, or by making certain
assumptions such as “everyone is obliged to provide their electric vehicle for grid stabilisation”.
Investment incentives can be implemented by changing cost assumptions. Standards can be adopted
through technical parameterisation. The realisability of different framework conditions is related to
socio-political acceptance [91]. Socio-political acceptance can be determined by agent-based models
based on empirical surveys. As a result, information about the feasibility of different policy measures
can help to develop a well-founded scenario framework. The political framework conditions are also
often bundled into so-called policy packages. One way of putting together consistent policy packages is
the cross-impact balance analysis, which quantifies the mutual interactions of various determinants so
that only plausible and consistent combinations of determinants (e.g., political framework conditions)
can be chosen.

Micro-Perspective: Policy instruments have also been assessed in micro optimising energy system

models to incorporate consideration for targets, requirements for laws, boundaries from regulations
as well as incentives [164]. These reflect overarching targets, such as renewable or energy efficiency
targets, defined directly through minimum or maximum capacity bounds. Additionally, taxes, such as
carbon taxes, can be placed on the consumption of carbon-emitting fuels and the impact on specific
actor groups analysed. Policy parameters related to acceptance can be included, as previously stated
in Section 4.2.3, through the use of hurdle rates to encourage technology adoption. In micro simulation
models, policy measures can be directly integrated, similarly to macro models, concerning standards,
bans, incentives, etc. The difference to macro-perspective models is that the effect of the policy measure
is endogenously quantified in market shares. This can be utilised by adding a choice attribute into a DCE
and gaining utility values for regulatory, financial or nudging measures. Scenario variations can also
be applied to evaluate the impacts of certain policies. The feasibility of measures can be implemented
as soft-coupling with a socio-political acceptance model to create a valid scenario framework.
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5. Concept of Model Coupling

Energy system analyses provide a basis for decision-makers regarding the design of and
appropriate policy framework for the energy system. As described in Section 2, there are different
approaches and models that assess different questions. The previous section has shown how empirical
results and factors from the social sciences can be translated into macro and micro-perspective
energy system models. However, it is not—or only barely—possible to develop a single model that
takes into account all facets of the energy system, including the social environment. Based on an
interdisciplinary discourse, this section suggests how the various models discussed can be coupled
with each other to gain a deep understanding of the systemic interrelationships of the energy system
and the transformation of the energy system. Figure 2 shows the concept of model coupling. Common
to all models is that a context scenario must be defined initially to be able to show which effects arise
under certain scenario conditions.
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The scenarios are composed of various factors from different dimensions, which can be orientated
to the social, technical, economic, environmental and political (STEEP) dimensions. When creating
scenarios, the mutual influence of the scenario determinants and the resulting potential inconsistency
must be taken into account. One approach to address this shortcoming and develop consistent scenarios
is the cross-impact balance analysis [54].

If an entire model’s compound is considered, as shown in Figure 1, it is helpful to first define
a common scenario to provide the framework. It is useful to select determinants that overlap in
the different models. Thus, the technological and economic assumptions on price developments,
cost developments, lifetimes or efficiencies should be harmonised and possible corridors should be
determined. Concerning the policy framework, possible measures should be identified that have to
be considered within the models. One aspect is the socio-political acceptance by citizens of these
measures influencing the feasibility of the measures and their probability of implementation. Empirical
input regarding socio-political acceptance can be gathered through surveys and other quantitative
and qualitative methods. By combining these inputs into an agent-based simulation, the feasibility of
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different policy frameworks can be analysed and used as input for soft-linking with macro- and micro
models (Section 3.1). In addition, common determinants of social dimensions, such as GDP, population
development, but also sufficient behaviour or environmental awareness, should be taken into account.
About environmental determinants, factors such as air quality or availability of resources can be taken
into account. In the context of this article, however, the social factors are the main focus.

The model coupling approach to be applied in this study combines the previously mentioned
aspects and the energy transition with regard to heating.

Technological innovation or genesis is the basis for the technological field of transformation
processes, such as the energy transition. The political framework sets the conditions, as focused
technology research can be carried out, such as the German government’s energy research programme
or the European Union’s Strategic Energy Technology (SET) Plan. Through targeted research and
information campaigns, specific technologies are promoted to various actors. In addition to the
technology genesis, the diffusion of knowledge is an important driver for the actual establishment of
the technology in the market. This includes manufacturers, but also technicians and handymen, who
influence the investment decisions of individuals. For the parameterisation of the technology genesis
model, empirical studies (interviews, workshops, experts, etc.) are necessary to characterise processes
and agents and to calibrate the model to observed innovation network structures, but also possible
future market shares of the technology. As a result, an innovation model provides information on the
temporal availability and shape of learning curves of technologies, which serve as input in ESM and
diffusion models. Furthermore, the assessed amount of knowledge about innovative technologies of
installers and craftsmen can be used to improve the modelling of technology diffusion.

Market acceptance or technology diffusion can be simulated or optimised based on
micro-perspective energy system models. DCEs are a useful empirical data collection tool, in addition
to the literature, as these can map the investment behaviour within an experiment and determine utility
values based on which decision model can be built that is also linked to a stock model. The result of
the micro-perspective model is the market penetration of technologies like heating systems, shares of
heating systems and renovation rates based on investment behaviour under certain conditions.

If the target system is considered without taking investment behaviour into account, most ESM
models conclude that heat pumps, as well as grid-bound heat supply with the simultaneous rising of
the energy standard, are the solution in the transformation of the heat sector. A look at investment
behaviour, however, shows that the majority of investments are made in gas condensing boilers,
partly because of decision-making patterns and intermediaries such as technicians and the resulting
investment decisions can also be implicitly reflected in the ESM. This makes it possible to quantify the
effects of the framework conditions, e.g., in the building sector, on other sectors or imports of electricity
or synthetic energy sources. In turn, the coupling is also possible in the other direction: Which basic
conditions must be given (evaluation using a micro-perspective model) to reach a future target system.

It should be noted that with this type of model coupling, there is no successive model sequence
presented. Instead, knowledge from the different models and their results, as well as the findings of
empirical surveys, is made usable by improving the model assumptions of the individual models or the
models themselves and by creating interfaces between the models. A common scenario framework is a
basis for this. An interdisciplinary discourse clarifies the potentials and possibilities of model coupling.
Overall, the analysis on a specific topic, such as the heat transition, can be significantly enriched by
using different models and taking into account findings from different areas of transformation.

6. Discussion and Conclusions

Energy system models (ESMs) can serve as decision support tool to inform political decision-makers
about the energy transition. Classically, ESMs optimise the system under cost-minimising criteria
considering techno-economic parameters, simulate future demand or technology uptake, or use the
methodology of equilibrium models. However, the transformation of the energy system to meet climate
policy goals and the Paris Accord is a societal process that will not take place as at a cost optimum.
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For this reason, an increasing number of studies have been aiming to include social sciences in energy
system models. This article reviews these various studies to ascertain which aspects are included
in energy system models and how this is accomplished. The review has shown that there is little
consensus on which social science factors should be considered and how these can be instrumentalised.
Therefore, as a result of an interdisciplinary discourse, this article shows which factors should be
considered, how they can be collected and what theoretical possibilities exist to integrate them into ESM.
For this purpose, a subdivision of ESM into macro and micro-perspectives was carried out. While the
macro-perspective covers the entire energy system, the micro-perspective focuses on techno-economic
models that reflect the diffusion of technology. The literature review on the integration of social science
factors shows that, up to now, the focus has been on considering only single areas of the social sciences
in ESM, such as acceptance or user behaviour.

The following factors were identified: investment behaviour (market acceptance), user behaviour,
local acceptance, technology genesis and socio-political acceptance. The empirical methods range
from qualitative methods like interviews or focus groups to quantitative ones like discrete choice
experiments (DCE) or egocentric network analysis. In the area of integrating social science factors,
various options emerge: direct model input via setting upper and lower limits or technology exclusion,
and monetisation collected through DCEs, expressed as willingness-to-pay or a soft model coupling.
For almost all questions in the context of transformation, findings can be generated through sub-models.
Their results can, in turn, be used to feed into ESM. In particular, the areas of technology genesis and
socio-political acceptance have so far received little attention in ESM, or their assumptions in ESM are
usually not well-founded. Therefore, sub-models are typically employed to analyse these aspects.

For a single model, considering all the aspects discussed, the inherent complexity of such a model
would prevent efficient modelling. Therefore, a model compound would be better placed to harmonise
the integration of these various areas. A possibility for this was proposed in Section 5, in which coupling
between energy system modelling from macro-perspective and microsystem models, in combination
with agent-based models with a focus on technology genesis and socio-political acceptance, was
presented. To ensure a coherent scenario analysis, the modelling group should define a scenario
framework in the form of context scenarios in advance.

In summary, there is a great need to integrate social and individual processes in energy system
models to achieve more realistic analyses. However, the social processes are sometimes very complex
and only a simplified representation is possible. The article shows how individual points can be
addressed, but there is still a great need for interdisciplinary cooperation to make the models and the
analysis better and the findings more profound.
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