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Agent-based models are used to explore how social networks influence the effectiveness of governmental programs to promote
the adoption of solar photovoltaics (solar PV) by residential households. This paper examines how a common characteristic of
social networks, known as network segregation, can dampen the indirect benefits of solar incentive programs that arise from peer
effects. Peer effects cause an agent to be more likely to adopt a technology if they are socially connected to other adopters. Due to
network segregation, programs that target relatively affluent agents can generate rapid increases in overall adoption levels but at
the cost of increasing disparities in access to solar technology between rich and poor communities. These dynamics are explored
through theoretical agent-basedmodels of solar adoptionwithin hypothetical social systems.The effectiveness of three types of solar
incentive programs, the feed-in tariff, leasing programs, and seeding programs, is explored. Even though these programs promote
rapid adoption in the short term, results demonstrate that network segregation can create serious distributional justice problems in
the long term for some programs.The distributional justice effects are particularly severe with the feed-in tariff. Overall, this paper
provides an illustration of how agent-based models may be used to evaluate and experiment with policy interventions in a virtual
space, which enhances the scientific basis of policymaking.

1. Introduction

This paper uses agent-based models (ABM) to evaluate the
effectiveness of public policies to promote the adoption of
alternative energy technologies by residential households. Of
particular interest is the adoption of rooftop solar photo-
voltaics (PV), or solar panels, which convert sunlight falling
on one’s rooftop into electricity. Solar PV is one example of
a decentralized energy technology with great potential for
reducing a given region’s dependence on fossil fuels and can
therefore contribute positively to sustainability [1]. At the
same time, solar PV has a long way to go. Even in markets
where rooftop solar is prevalent, such as in Germany and
in California, USA, overall market penetration is relatively
small [2, 3]. For individuals, solar PV systems represent large
investments and carry with them risk and uncertainty. It is

in reducing these risks and up-front costs that incentives
to install residential solar systems can help promote more
widespread adoption and commensurate decarbonization of
energy systems.

These considerations underscore the need for public poli-
cies that incentivize more widespread interest and adoption
of solar PV. While incentive programs come in many shapes
and sizes, the essential logic of an incentive program is that
it will reduce barriers to adoption for direct recipients of a
program benefit, such as those agents that receive tax credits
or other subsidies for installing solar PV. Incentive programs
also create indirect benefits through peer effects—a phe-
nomenon whereby the adoption behavior of agents increases
the probability that other agents in the system will adopt
(see, e.g., the diffusion model by [4]). Peer effects work
through a variety of mechanisms, such as the exertion of
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social influence onnonadopters (e.g., [5, 6]) and the provision
of new information about the true costs and benefits of solar
through active communication with solar adopters (e.g., [7–
9]).

Thus beneficiaries of governmental incentive programs
can, through their adoption behavior, increase the probability
that other actors in the system will also adopt. At the
same time, however, peer effects are naturally limited to a
certain group of people around an adopter. Certain incentive
programs may perform well in terms of promoting greater
distributional energy justice through supporting PV adop-
tion specifically by low-income households, thus increasing
the number of social multipliers who put the peer effect
into action within this group. Other incentives systematically
target more affluent households and thus might increase
injustice by spurring a peer effect in a group with less need
for a given technology.

In this way, public policies meant to promote solar
adoption may create inequalities in the adoption of solar
between disparate social groups. These potential inequities
are ignored in most formal evaluation of energy policy,
which tends to focus on the overall penetration of solar
PV, that is, the aggregate number of people who have
adopted in a given region. And yet, understanding inequality
in access to renewable energy is a crucial research need
([10]; [11, 179]; [12, 435]). This is important in part because
solar PV technology carries more than just environmental
benefits. Solar PV can also create significant cost savings for
households, helping them to be less vulnerable to energy
rate increases and fluctuations in availability. Depending
on local policies, rooftop solar can even create a revenue
stream for households as they sell surplus electricity back
to the energy utility. However, these benefits accrue in the
long term and becoming a PV adopter generally requires
substantial capital investments and financial risk. This makes
it difficult for households with modest incomes to enjoy the
long-term benefits of solar, potentially creating inequities
where the solar PV is exclusively available to wealthy house
holds.

1.1. The Need for a Complexity Science Approach to Policy
Evaluation. In order to design better public policy for solar
PV, it is necessary to evaluate the efficacy of different
policy choices given the complex social systems in which
these policies unfold, particularly in terms of the degree
to which they avoid (or exacerbate) inequities in access to
a given technology. Classic tools of policy evaluation are
poorly suited for this task. Classic tools tend to extrapolate
future scenarios based on past behaviors, assume relatively
homogenous and rational agents, and focus on aggregate
trends. These approaches largely ignore the complexity that
arises through the interplay of individual decision-makers
and focus instead of the decisions of a hypothetical “central
planner” (see, e.g., [13]).

The use of a network science perspective allows us to
study complex system processes through the explicit repre-
sentation of relations between actors, such as pathways or
the interdependence of decision-making. In recent years, a
vast body of literature has emerged on diffusion processes in

complex networks [14, 15], such as the spread of epidemics
[16] or information [17]. We build on this research and
extend it to the evaluation of policies that aim to promote a
certain technology adoption behavior, explicitly taking into
account the interdependencies between decision-makers and
the complex social networks in which they are embedded.
The peer network influences studied here are nested within
the larger study of economic networks, which are themselves
an important approach for complex systems analysis (see
Emmert-Streib et al., 2018, for a comprehensive review).
For tractability, we focus on the purely social influences by
which potential adopters learn about the benefits and costs
of solar energy. Of course, potential adopters are embedded
in a complex economic network of organizations providing
adoption incentives and banks providing the capital for
necessary upfront investments.

Consequentially, this paper applies a complexity science
perspective by explicitly accounting for the diffusion of
adoption behavior in complex networks in the evaluation of
solar policies, particularly in terms of equity outcomes. One
useful tool in the complexity science toolkit is the agent-
based model (ABM), which is increasingly recognized as a
promising approach to evaluate the effectiveness of public
policies where costs and benefits accrue from complex social
behaviors. Theoretical ABMs can examine the nonlinear
dynamics of solar PV adoption which arise from the behav-
iors of interconnected, heterogeneous agents, as we see in
the real world where solar PV adoption decisions are made.
By focusing on the individual decision-maker rather than
aggregate trends, ABMs allow for an explicit representation
of agents’ adaptive capacity [18]. ABMs are increasingly used
to develop a more robust understanding of energy demand
and the ex-ante evaluation of renewable energy policies
[19].

1.2. Roadmap of This Paper. This paper uses a series of theo-
retical, computational ABMs to compare and evaluate three
distinct types of real-world solar incentive programs: the
feed-in tariff, leasing programs, and seeding of underserved
communities. Of particular interest is the effectiveness of
these incentive programs in terms of (i) the overall speed of
solar PV adoption in a social system and (ii) the access to
solar PV that is afforded to different groups, particularly high-
and low-income agents. This second evaluative criterion
is a crucial component of the distributional justice issues
discussed above. These inequities may be underestimated
if an analyst assumes that social networks allow for the
positive, indirect benefits of incentive programs to spill over
to less affluent communities that face high barriers to solar
adoption. In reality, social network structures may inhibit
these processes and dampen the indirect benefits of solar
incentive programs. In other words, program effectiveness
is likely conditional on how social networks are structured
within a given market.

Our model compares the effectiveness of incentive pro-
grams in terms of aggregate adoption as well as energy justice
as called for by Sovacool [10, 2] and illustrates the degree to
which the structure of actual social networks—particularly
the degree of segregation observed within networks—is likely
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to change the relative effectiveness of different policy instru-
ments. Understanding the mechanisms behind the interplay
of different network structures and policy instruments is
crucial for a transfer of policies from a context with a rather
integrated society (such as Germany or California) to a
context with a more segregated society (as might be the case
in developing countries).

This paper turns next to a discussion of the benefits
generated by solar incentive policies, with a particular focus
on the indirect benefits derived from peer effects. We discuss
how network segregation may create distributional justice
concerns in that certain segments of society will accrue dis-
proportionate benefits. We then turn to a focused discussion
of the particular types of incentive programs represented
in our ABM, as well as expectations based on network
theory regarding program effectiveness based on varying
degrees of network segregation. The structure of the ABM
is discussed afterwards—this is a theoretical model in which
agents in a hypothetical social system are randomly exposed
to incentive programs and make subsequent adoption deci-
sions. We conclude with an analysis and summary of the
results, as well as a discussion of policy implications of this
research.

2. Solar Adoption Incentives and the Role of
Social Networks

Solar PV adoption dynamics are ultimately the result of
decisions made by individuals and households. As with
other types of high-cost, emerging technologies, these are
not simple decisions [20, 21]. Many factors play into adop-
tion decisions, such as peoples’ financial means, peer-group
behavior, and attitudes towards green and new technologies
(e.g., [6, 173]).

Solar incentive programs seek to intervene in these indi-
vidual decision-making processes by reducing the various
barriers to adoption, whether this means making solar PV
more affordable, less uncertain, or more socially desirable.
Most programs focus on reducing financial barriers and
perceived risks associated with solar. Perceived risk can be
decreased through information provision—providing trust-
worthy information about the true costs and benefits of
adopting solar PV. Perceived risk can also be reduced by
guaranteeing a reasonable amortization period (e.g., through
guaranteed feed-in-tariffs as used, e.g., in Germany and
discussed in more detail below). Incentives may decrease
financial barriers in two ways: by decreasing the upfront
investment costs for purchase and installation of the PV
(e.g., through convenient loans or leasing contracts) and by
increasing the long-term profitability of a solar system [20, p.
74].

As noted above, these direct benefits of solar incentive
programs are complemented by the indirect benefit of mak-
ing solar PV a more viable or attractive option for poten-
tial adopters. It is these indirect benefits—realized through
several possible mechanisms—through which a bulk of the
benefit of solar incentive programs are likely realized. These
mechanisms include, for instance, lowering costs as more
individuals adopt. Increasing demand for solar PVs followed

bymore competitors on the supply side leads tomore efficient
ways of production and decreasing prices [23]. Of central
interest in this paper, however, is the peer effect, where the
adoption of solar by a substantial number of early adopters
makes itmore likely that agents in the (geographical or social)
neighborhood adopt solar PV. A number of mechanisms
underlie the peer effect, such as increased information provi-
sion through one’s social network, the creation of social pres-
sures to reduce one’s environmental impact, or the showing-
off of investments in new technologies. Solar adopters who
arewell integrated in the networkmay act as socialmultipliers
by distributing information and being positive role models.
For designing just and effective incentives, it is necessary to
consider the role that the peer effect and network structures
play within the diffusion process of environmental-friendly
technologies.

2.1. Networks and Indirect Benefits of Solar Incentive Programs.
The idea that social networks enhance the indirect benefits
of solar incentive programs is not new; indeed, there is
a growing body of research on the interdependencies of
environmental consumption decisions by individuals and
households. This has been studied in the literature alterna-
tively as peer effects [5, 9, 24], social influence [6, 7], and
diffusion of innovations [25–27], all of which underscore the
same fundamental lesson that the behavior of any particular
agent is determined in part by the behaviors of those they are
socially close to.

Varied notions of “closeness” matter for peer effects,
such as spatial proximity (e.g., one might tend to adopt the
behaviors that are prevalent in the community) or informal
social relations (e.g., one might adopt the behaviors of their
friends). Whatever the case may be, social closeness may
be represented in social systems using the concept of social
networks [28, 29]. A network is simply a generic representa-
tion of how agents in social systems—commonly referred to
as the nodes, which may represent individuals, households,
formal organizations, or any discrete decision-maker—are
related to one another through linkages, which represent
socially important relationships such as information sharing,
friendship, or proximity.

There is a vast literature in the emerging field of network
science that seeks to understand how individual behaviors
are correlated with one’s position in a network [30, 31]. Most
relevant to the idea of the peer effect are diffusion models
of networks. Generally speaking, these models examine how
network nodes adopt the attributes of their neighbors and
how certain structures influence the speed with which a
particular attribute spreads throughout the network (see [26]
for a current overview).Thesemodels are applicable to a wide
range of phenomena, such as the spread of disease over space
and time (see, e.g., [32, 33]), the reaching of a consensus
within groups [34, 35], or the adoption of environmental
technologies including rooftop solar [5, 36, 37].

The primary characteristic of a network that increases
diffusion speeds (and therefore the effectiveness of peer
effects) is the closeness of agents within the network [38].
“Closeness” refers to the average distance between any two
pairs of network nodes and is related to how many steps
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(a) Integrated network (b) Segregated network

Figure 1: Illustrative network structures. Note: networks generated using ABMs of random network formation in R [22].

it takes to reach a given node by starting at any particular
node. Even relatively slight changes in network structure can
dramatically influence the closeness of nodes. For instance,
only a few random rewires of a lattice-type network can
dramatically increase the overall closeness of nodes and thus
increase potential diffusion speed [39, 40].

In this paper, we focus on two particular types of network
structures: “integrated” and “segregated” networks (Figure 1,
Panels (a) and (b), resp.). In these networks, network actors
have a group membership represented by the shading of the
nodes. Integrated networks are those where actors are as
likely to be connected to actors of their own type as to actors
of another type. For diffusion processes in an integrated
network, it should make no difference to which group the
first adopters belong. In a segregated network, however,
actors with the same attributes are much more likely to be
connected than actors with different attributes. For instance,
actors might be divided along economic characteristics or in
terms of attitudes towards new technologies. In the case of
segregated networks, diffusion is fastest among the group of
the early adopters. However, overcoming the gap between the
two groups—and thus achieving widespread adoption—will
be much more difficult. Again, the position of the early
adopters will be crucial: if the early adopters are brokers
between the two groups overcoming the gap will happen
much faster than if the early adopters are at the periphery of
the network.

The speed of diffusion processes in varying types
of network structures should be an important consid-
eration when designing policies to promote technology
adoption—otherwise one cannot realistically estimate peer
effects. In this paper, we explicitly model the process in
integrated and segregated networks and study how diffusion
processes differ with network structure and how the efficacy
of incentive programs is conditional on these structures.

3. Theoretical Expectations:
Distributional Equity and the Problem of
Network Segregation

Governmental goals are mostly set towards reaching certain
target percentages of, for instance, renewable energies relative
to overall energy production (for the German case, see [41])
or towards the achievement of absolute goals, such as the
100,000 Roof Program for solar PV or the recent example
of subsidies for hybrid and electric vehicles in Germany
[42]. This means that the success of incentive programs is
measured primarily according to their influence on overall
adoption rates [43–45]. However, in a world where large gaps
between affluent and poorer households are observed, one
could argue that an aimof public spending and public policies
should lie in minimizing this gap. Over the last decades,
public spending towards supporting renewable energies has
substantially increased worldwide and is expected to grow
further, from an estimated USD 214 billion in 2014 to USD
300 billion by 2020 ([46, p. 5]; [47]). Calls are getting louder
that this vast amount of public spending cannot be one-
dimensionally directed towards increasing, for example, the
share of renewable energies. Instead, “the distribution of the
costs and the benefits of these subsidies across socioeconomic
groups”—and thus the question of social equity in policy
design—must be taken into account ([46, p. 5]; [48, p. 263];
[49, 50]). Therefore, overall adoption rates should not be
the only evaluative criterion for policy investment incentives,
but the effect of the policy on social equity has to be taken
into account when deciding for suitable policies to support
renewable energies and other measures towards an energy
transition [48, p. 255].

As noted above, one’s choice to adopt solar PV is depen-
dent on a given actor’s position in a social network. Thus
the ability of a given agent to influence the decisions of
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(a) (b)

Figure 2: Possible influence relations of an adopter.

others is likely dependent on the level of segregation in the
network. Figure 2 illustrates this schematically. In Figure 2(a),
a technology adopter (the shaded agent) is embedded in an
integrated network, in the sense that the adopter is connected
to similar agents (circles) about as often as to dissimilar agents
(triangles). Thus, the adopter influences both groups (circles
and triangles) equally through the peer effect. In many real-
world scenarios, however, we observe that adopters have
networks that are segregated in the sense that connections
exist primarily among agents with similar attributes [51–53].
Attributes that might be relevant in this context include the
level of education, the awareness of environmental problems,
the willingness to pay for sustainable technology, and overall
financial means [8, p. 344].This scenario of agents embedded
in segregated networks is depicted in Figure 2(b). In this
case, peer effects lead to an increased probability of adoption
within the group of the first adopters [48, p. 263], while
the probability of the members of the other group is not
affected at a large scale. In our application, types of actors
reflect an actor’s individual propensity to adopt solar PV.This
propensitymay be dependent upon characteristics such as the
affluence and environmental beliefs of an actor, among other
factors [6].

Figure 1(a) depicts an integrated social network in which
links between actors of the same type are as likely as
links between actors of different types. Diffusion can flow
unhindered fromone actor (type) to another. In an integrated
network, peer effects can counteract initial differences in
adoption propensities if a low-propensity actor is connected
to many high-propensity actors who already adopted PV;
this will drastically increase its own probability to adopt.
In a segregated network, on the other hand, links between
actors of the same type are much more likely than links
between actors of different types (see Figure 1(b)). Thus,
in a segregated network, peer effects cannot enhance the
diffusion of positive environmental consumption equally
throughout the whole network. Low-propensity actors are
mainly influenced by other low-propensity actors, which will
hinder diffusion among them. Without any incentives, we
thus expect adoption curves of low- and high-propensity
actors to be closer together in integrated than in segregated
networks–where adoption curves depict the percentage of
adopters within a given group over time.

In this way, network segregation can slow the diffusion
of positive behaviors in social systems. Segregation limits
peer effects between unlike actors, and therefore incentives
targeted to affluent actors will not benefit less affluent actors
in the long run because sufficient connections between the
two groups are missing. A careful evaluation of incentives
and their intended and unintended outcomes is needed
to set diffusion processes in motion which lead to more,
instead of less, energy justice. Our evaluation of equity
outcomes of renewable energy subsidies can bring us one step
further to answering one of the research questions proposed
by Sovacool [10, p. 22]: “Which energy [. . .] systems help
reduce poverty and meet development goals and which ones
exacerbate inequality and concentrate wealth?”

3.1. What Incentives Work and When? Various forms of
supporting PV installations through incentives are already
practiced in numerous contexts; incentives include the feed-
in-tariff (e.g., in Germany), leasing programs (e.g., in Califor-
nia) and pilot projects of seeding solar to poorer communities
(also in California). While the outcome of increasing overall
adoption rates can easily be measured, other effects of
incentive programs remain mostly unknown, for example,
the questions of who is benefitting from this kind of incentive
in the short and the long run. Modelling the processes of
solar adoption allows us to analyze the effect of the varying
incentives on the adoption dynamics, which include uptake
of installations as well as equity between different societal
groups. In the following, the three forms of incentives applied
in this work will be briefly summarized.

Feed-In Tariff. The feed-in tariff guarantees adopters a long-
term fixed rate for every kWh fed into the grid from
renewable energies, with solar PV systems being the most
feasible option for private households. Through this long-
term guarantee, the financial risk of adopting is substantially
reduced and the large investment will pay off much faster
than without the incentive. This incentive primarily targets
actors with the financial means tomake the initial investment
in solar. This is because the economic benefits of the feed-
in tariff are for long term, and the upfront investment is not
necessarily made any easier.
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The first country to implement a feed-in tariff was USA
with its Public Utility Regulatory Policies Act (PURPA) in
1978. (Pub.L. 95–617, 92 Stat. 3117, enacted on November 9,
1978.) In 1991, a feed-in tariff was enacted in Germany, the
Act on the Sale of Electricity to the Grid [54]. This act had a
far-reaching impact on the development of PV installations
in Germany. Since then feed-in tariff policies have spread
worldwide and are by now world-leading instruments to
support renewable energies [55, p. 19]. In the year 2007, 46
jurisdictions worldwide have implemented a feed-in tariff.
Beside numerous western countries and jurisdictions such
as Switzerland (1991), Italy (1992), Denmark (1993), Spain,
and Greece (1994), also quite a number of countries from
the global south have implemented a feed-in tariff, such as
India (1993), Sri Lanka (1997), and Algeria and Indonesia
(2002) to name the first among them [56]. As multiple
studies have shown that the implementation of the feed-
in tariff in Germany led to a fast uptake of renewable
energies in general and solar energy in particular (see,
e.g., [57]), this in turn led to decreasing prices for the PV
technology making the technology more cost-efficient [58,
59]. By targeting the actors that are most likely to adopt
(high-probability agents), we expect that a faster overall
uptake of installations will be observable (as compared to no
incentives).

However, Welsch and Kühling [6] show that in Germany
higher-income households are more likely to invest in solar.
This trend is consistent with the feed-in tariff, which makes
the adoption of solar a profitable investment for affluent
actors. Jenkins et al. [11, 176] thus argue that theGerman feed-
in tariff is an example of a program that promotes energy
injustice because it leads to higher energy prices in general
in order to refinance the promised fixed feed-in rate for
renewable energy producers ([48, p. 263]; [60]). People that
are interested in investing, but do not own their home or
do not have the initial money to invest, cannot participate
in the transition. However, in the long run, they have to
bear the burden of rising energy costs due to the guaranteed
feed-in, without having had the chance to participate in the
beginning ([61, p. 3882]; [11, p. 176]). This phenomenon of
feed-in tariffs on energy inequity was analyzed by researchers
in a wide variety of contexts, such as in Australia, California,
and UK [46], Denmark, Germany, Cyprus, and Spain [62],
and Thailand [63]. Based on these observations, we argue in
the following that the high and upper middle-income class
is disproportionally benefitting from the feed-in tariff, while
low-income households are unlikely to benefit from this
incentive. Because of missing links to social multipliers, we
expect this effect to be more critical in societies with a major
income gap and high segregation, having crucial implications
for the distributional energy justice of this incentive [11, p.
176]. To evaluate these distributional justice issues, we will
examine the adoption dynamics of high- and low-probability
actors separately. In integrated networks, we expect that the
difference between the dynamics of the two actor groups
will not increase significantly through the feed-in tariff
(as compared to no incentive in integrated networks). In
segregated networks, however, we expect that the difference
in adoption dynamics between high- and low-probability

actors increases significantly through the feed-in tariff (as
compared to no incentive in segregated networks).

Leasing.This formof incentivizing solar adoptions is based on
a third-party ownership. Third parties own and operate PV
on private households or small industrial buildings. Through
the leasing agreement, upfront costs for installing solar are
extremely reduced or even eliminated. Economic benefits
occur from the first month and not after a long amortization
period. Leasing programs are widely present in USA (see,
e.g., [37]) and are currently becomingmore visible in Europe.
Drury et al. [64] as well as Rai and Sigrin [36] are able to
show that leasing options are increasing the demand and
widening the range of potential adopters throughmaking PV
available for less wealthy agents as well. Leasing programs
are thus expected to lead to a faster overall uptake of
installations (as compared to no incentives).Wealthier agents
(particularly those who are risk-averse) will benefit from
this type of incentive as well. The leasing program thus
targets both high- and low-probability actors. Therefore,
we expect the differences in adoption dynamics between
high- and low-probability actors to stay stable with leasing
programs in integrated as well as in segregated networks (as
compared to no incentive in the respective network). These
expectations will be tested with the model introduced in
the next section. The same dynamic is expected to occur
with incentivizing solar adoption through low-interest loans
[63, p. 266].

Seeding Less Affluent Communities. Using this strategy, free
or low-cost PV systems are given out to a selected number of
qualified agents in low-income communities.This has a dou-
bled positive effect on adoption rates: first, strong financial
support is especially important for low-income households to
support their investment [20, p. 85]; second, it is increasing
the visibility of PVs, spurring peer effects within those
communities [8, p. 340] (see above on the importance of peer
effects in low-income communities). Currently, this form of
support is in pilot status only. For example, pilot projects have
been implemented in California under the Greenhouse Gas
Reduction Fund in collaboration with the Oakland-based
nonprofit organizationGrid Alternatives.The project is partly
financed by California’s cap and trade program and aims at
supporting low-income families through free PVs. The peer
effects of this project are not yet monitored. In an agent-
basedmodel, Zhang et al. [65] show extremely positive effects
of seeding for overall adoption rates. Therefore, seeding
programs are expected to lead to a faster overall uptake
of installations in our models as well (as compared to no
incentives). Since the seeding program is only targeting
low-income actors, it drastically increases the probability
that these agents will adopt solar. Especially in segregated
networks, it will be of major importance to spur peer effects
in currently underserved communities. We therefore expect
that seeding programs positively affect the adoption dynam-
ics in segregated networks by decreasing the differences
between high- and low-probability actors (as compared to
no incentive in segregated networks). In integrated networks,
however, the difference in adoption dynamics is not expected
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Figure 3: Model overview of one simulation run.

to change significantly with seeding programs (as compared
to no incentive in integrated networks).

These adoption dynamics—and the role of governmental
interventions in managing the tradeoff between speed and
equality of adoption across communities—are the focus of the
agent-based model described in the following section.

4. Model Overview

These theoretical expectations are explored through an agent-
basedmodel that examines adoption dynamics over time in a
hypothetical social system, given variation in the underlying
social network structures and incentive in place. This model
was coded in R and is an advancement of the model previ-
ously developed and explored by Henry and Brugger [66].
The predecessor model included many of the components
explained in detail below but laid its focus on the effect
that the strategies of firms (when targeting their potential
customers) would have on the adoption dynamics, by being
a gatekeeper to adoption possibilities without altering the
actual adoption decisions. Advancing the previous model,
the current version allows explicitly modelling the effect of
policy interventions (here through various incentives) on the
adoption probabilities of the different types of individual
agents and thereby on the overall adoption dynamics.

As noted above, we study peer effects by modelling
the social network connecting actors, and that enables and
constrains social influence. Figures 1(a) and 1(b) show two
illustrative networks in which agents are visualized as circular
nodes, with their color representing the fact that they belong
to one of two groups, differentiated through socioeconomic
attributes that influence the probability of adoption.The links
between those nodes represent the relations between them,
such as information exchange or proximity, through which
peer effects and social influence can unfold.Therefore, agents
that are connected to other agents that have already adopted
solar are assumed to have a higher probability of adopting

solar themselves, compared to agents who are not connected
to adopters.

Figure 1(a) shows an integrated network, where links
between actors of different types are as likely as links between
actors of the same type. This represents a network where
actors build their relations entirely independent of their own
and of the other agents’ group membership. Contrasting
this network, Figure 1(b) visualizes a segregated network in
which the realization of a relation is highly dependent on
whether two agents belong to the same group. In this network
structure, agents within one group are much more likely to
be influenced by other agents within their own group. How
strong this effect is depends on the level of segregation, which
is governed by the segregation model parameter (see below).
As Henry and Brugger [66] note, this representation of the
network may capture various types of social closeness which
determine the ability of one agent to influence another, such
as spatial proximity, shared participation in social venues, or
friendships. Many such real-world networks exhibit segrega-
tion.

Figure 3 gives a graphical overview of a model run.
In the first step of every model run, a network of 100
agents is formed. The agents are randomly assigned to one
of two groups. Links between those agents are built based
on the network segregation parameter (S) and the density
(d). Following this network formation, in each time step,
one potential adopter is selected at random. This agent then
makes an adoption decision based on parameters, which
are fixed for the whole simulation run (the incentive quota
and the social influence parameter, SI) and on parameters
that are actor-specific (incentive, I, and propensity difference,
P) or even time-step-specific (number of adopters in the
neighborhood, N). After each time step, the number of
adopters in each group is reported. The random selection
of a potential adopter and the following adoption decision
is repeated until all agents are adopters. In the following
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Table 1: Model scenarios: overview over determining parameters.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8
Incentive No incentive Feed-In Leasing Seeding No incentive Feed-In Leasing Seeding
Segregation Low (S=0) Low (S=0) Low (S=0) Low (S=0) High (S=0.75) High (S=0.75) High (S=0.75) High (S=0.75)
Density 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Incentive quota 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Propensity difference 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Social influence 1 1 1 1 1 1 1 1
With these eight scenarios we can study the diffusion processes under the four possible incentive parameters (no incentive, feed-in, leasing, and seeding) in
highly segregated (segregation high, S=0.75) and in integrated (segregation low, S=0) networks. Keeping all other (bold font) parameters constant over all
simulations allows us to single out the effects of the different incentives and segregation on the diffusion processes.

section, the model parameters and the decision are explained
in greater detail.

4.1. Synopsis of Model Parameters. This model examines the
effect of various policy incentiveswithin networkswith differ-
ent structures. The different network structures are governed
by the network segregation parameter. Three additional key
characteristics are defined and controlled for in the model,
incentive quota, social influence, and propensity difference,
all of which are introduced in the following. All of these
characteristics stay constant within one model run but may
vary across runs.

Network segregation is captured by parameter S, reflecting
the degree to which linkages tend to exist among actors with a
similar propensity for technology adoption. For the purpose
of this study, the segregation parameter was chosen to be
either 0 or 0.75. A value of zero leads to an integrated network
(see Figure 1(a)), meaning that agents are as likely to form
linkswith those that arewithin the same group as to those that
are in the other group. In contrast, if S=0.75, the network is
highly segregated (see Figure 1(b)) andwithin-group links are
much more likely to be realized than links between agents of
different types. In the setup of this model, the link formation
is solely governed by this segregation parameter S and the
density d of the network. Links between actors of the same
type are assumed to occur with probability 𝑑 + (𝑆 ∗ 𝑑). On
the other hand, links between actors from different groups
are assumed to occur with probability 𝑑 − (𝑆 ∗ 𝑑). Therefore,
with a segregation parameter of 0.75, links between similar
agents are seven times as likely to be realized as links between
different types of agents (8.75% and 1.25%, resp., displayed
in Figure 1(b)). As discussed below, other values might be
reasonable as well; however, a clear distinction between the
two observed network structures is crucial.

Incentive quota is a model parameter regulating how
many incentives are given out. This variable ranges between
0 and 1, where 0 means that no incentives are given out and
1 means that all adoptions are supported by incentives. For
the analysis of this paper, we studied an incentive quota of
0.3, which means that adoption decisions are made under
the knowledge of the incentives until 30% of the agents
have adopted. This quota reflects the governmental course of
incentivizing the starting phase of the new technology rather
than aiming at supporting all agents to adopt.

Social influence is a parameter determining the strength
of the peer effect by which an agent’s adoption probability
increases as a function of the number of adopters they are
connected to. This parameter (SI) takes a value from 0 to
1, inclusive, where 0 indicates that agents are not at all
influenced by the adoption of other agents they are connected
to, but the strength of this influence increases as SI goes
towards 1. In the currentmodel, we simulate a constant strong
social influence of 𝑆𝐼 = 1.

Propensity difference is a model parameter (P) that allows
differentiating the baseline adoption probability of actors
that are part of two different groups. The baseline adoption
probability captures an agent’s probability to adopt when no
neighbors have adopted yet and no incentives are in place. In
the current model, we differentiate between two groups, the
“high” and “low” propensity agents. We assume a propensity
difference parameter of 𝑃 = 0.6, giving a baseline adoption
probability for low-propensity agents of 5% and a baseline
probability of 8.8% for high-propensity agents.

The model setup consists of three initial steps: (1) the
creation of 100 agents, (2) their assignment to one of two
groups (either with a high or a low baseline propensity to
adopt the technology), and (3) the formation of the network.
The segregation parameter and a fixed density of 0.05 govern
the network formation. A density of 0.05 means that 5% of all
possible relations are realized in the network. The density of
the network reflects the overall intensity of social interaction
within the network (e.g., how often do people speak about the
adoption of solar and how often do they observe that other
people have already adopted).

In order to compare a reasonable number of different
scenarios, identify only the effect of the parameters that are
of major interest within the context of this paper, only the
segregation parameter (high versus low), and the type of
incentives (no incentive, feed-in, seeding, and leasing) across
model runs, leading to eight distinct scenarios as summarized
in Table 1.

4.2. Model Dynamics. After the model is set up, an iterative
process is started, which consists of two stochastic processes:
first, one potential adopter (i.e., any agent that has not yet
adopted) is selected at random and, second, the chosen agent
makes his adoption decision. In the following, both processes
are explained in detail.
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Table 2: Incentive parameter values 𝐼(𝑟𝑖, 𝑧) by incentive program
and agent type

Poorer households
(𝑟𝑖 = 0)

Richer households
(𝑟𝑖 = 1)

Feed-In tariff (z =1) 𝐼0,1 = 1 𝐼1,1 = 1.5

Leasing (z = 2) 𝐼0,2 = 1.25 𝐼1,2 = 1.25

Seeding (z = 3) 𝐼0,3 = 1.5 𝐼1,3 = 1

Random Agent Selection. Each time step starts with the
selection of a potential adopter. Therefore, from all current
nonadopters, one agent is chosen uniformly at random. This
gives every nonadopter the same probability of being selected
as all other nonadopters. Mathematically, the probability
𝑃𝑟𝑅(𝑖, 𝑡) that the 𝑖th nonadopting agent is selected at time 𝑡
is therefore given by

𝑃𝑟𝑅 (𝑖, 𝑡) =
1

𝑄𝑡
, (1)

where 𝑄𝑡 represents the number of agents at time 𝑡 who
have still not adopted the technology. In each time step,
exactly one agent is chosen, who will then make an adoption
decision.

Agent Adoption Decisions. The agent that has been selected
makes a stochastic decision of whether or not they adopt
the technology. The probability hereby varies depending
on group membership, type of incentive, and importance
of social influence. The probability 𝐴(𝑖, 𝑡) of the potential
adopter 𝑖 to adopt at time step 𝑡 is therefore governed by the
following logistic function:

𝐴 (𝑖, 𝑡) =
𝐼𝑟𝑖 ,𝑠

1 + 𝑒−(−2.944+𝑃∗𝑟𝑖+𝑆𝐼∗𝑁𝑖,𝑡)
, (2)

where 𝑟𝑖 indicates the group membership of agent 𝑖 and is
coded as one if the agent is member of the high-propensity
group and zero if the agent is amember of the low-propensity
group. P and SI are the propensity difference and social
influence parameters described above, and𝑁𝑖,𝑡 represents the
number of adopters the 𝑖th agent is connected to at time 𝑡. (In
some few cases, this can lead to 𝐴(𝑖, 𝑡) > 1; in that case, the
probability is redefined to 𝐴(𝑖, 𝑡) = 1.)

Moreover 𝐼𝑟𝑖 ,𝑧 is introduced to model incentive pro-
grams. The incentive parameter 𝐼𝑟𝑖 ,z is contingent on the
group that the actor belongs to (𝑟𝑖) and the incentive (z) in
place. If the agent 𝑖 is profiting from the given incentive, it
will increase its probability to adopt (𝐼𝑟𝑖 ,𝑧 > 1). However,
if a policy incentive is not targeting the group that 𝑖 belongs
to, the probability function will stay the same as without any
incentive (𝐼𝑟𝑖 ,𝑧 = 1); Table 2 shows the respective values
for 𝐼𝑟𝑖 ,𝑧. Critical for the idea of the simulation are the relative
values of 𝐼𝑟𝑖 ,𝑧 for each incentive—the relationship between
the parameter 𝐼0,𝑧 for the low-propensity and 𝐼1,𝑧 for the
high-propensity agents—rather than their absolute values.
This approach is comparable to classical game theoretical
models—like the Prisoners Dilemma—in which not the
actual payout values matter but rather their relative structure

(see, e.g., [67, p. 4f].). However, actual values are necessary
for following the decision-makingwithin the game and in our
case for simulating decision-making processes.

The feed-in tariff (incentive: 𝑧 = 1), which is most
beneficial to the high-propensity group (as explained above),
does not alter the probability function of the members of
the low-propensity group (𝑟𝑖 = 0 ⇒ 𝐼0,1 = 1) but
does have an impact on the probability function of the high-
propensity group (𝑟𝑖 = 1 ⇒ 𝐼1,1 = 1.5). In this
way, the incentive parameter is chosen such that it increases
any given probability, which is dependent on propensity
difference and the social influence parameter as well as the
number of connected agents that have already adopted, for
high-propensity actors by 50%.

The seeding incentive (incentive: 𝑧 = 3) targets the
low-propensity group by giving out free PVs to poorer
households, thus increasing the probability function to adopt.
Again the incentive parameter increases any given proba-
bility, which is dependent on propensity difference and the
social influence parameter aswell as the number of connected
agents that have already adopted, by 50% (𝑟𝑖 = 0 ⇒
𝐼0,3 = 1.5), while keeping the probability function of the

high-propensity group unaltered (𝑟𝑖 = 1 ⇒ 𝐼1,3 = 1).
Under the possibility to lease PVs to private households

(incentive 𝑧 = 2), the members of the high- as well as
low-propensity groups can benefit, because it gives actors of
both groups the chance to avoid high upfront investments
and long-term benefits through the installation. However,
long-term benefits are not expected to be as high as with
the other two incentives (for the targeted group). Thus the
incentives through leasing options are expected to have a
positive influence on the adoption probability functions of
both groups but not as high as when targeted directly. This
is reflected in the applied incentive parameter (𝑟𝑖 = 0 ⇒
𝐼0,2 = 1.25 & 𝑟𝑖 = 1 ⇒ 𝐼1,2 = 1.25), which increases

any given adoption probability for actors of both groups by
25%.

Three additional points about the behavior of this adop-
tion probability function are needed. First, the constant coef-
ficient of -2.944 on the logistic function ensures a minimum
probability of adoption of 5% for all agents, no matter their
propensity or social connections. The minimum probability
that an agent 𝑖 will adopt is a situation where 𝑖 has low
propensity (i.e., 𝑟𝑖 = 0) and the agent is not linked to any
adopters (i.e.,𝑁𝑖,𝑡 = 0). Thus, a constant coefficient of -2.944
fixes this minimum probability of adoption at approximately
0.05 or 5%. We conjecture that the value of this coefficient
will not alter adoption trends other than speeding up or
slowing down the overall process. Varying this constant will
only speed up or slow down the model and should not
fundamentally change the underlying dynamics.

Second, the propensity difference parameter P captures
the marginal difference in adoption probability between low-
and high-propensity agents. Since P may not be larger than
one, a high-propensity agent will be nomore than three times
as likely to adopt as a low-propensity agent, controlling for
other factors. Following the preceding point about minimum
adoption probabilities, this means that a low-propensity
agent will have a minimum adoption probability of 5%, and
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Table 3: Effect of incentive programs on speed of adoption: integrated versus segregated social networks.

DV = avg. wait time (smaller values signify faster adoption speeds)
Model 1: Integrated networks Model 2: Segregated networks

Program dummy variables
Feed-in tariffs used? -0.415 ∗ ∗ ∗ -0.394 ∗ ∗ ∗
Leasing program used? -0.366 ∗ ∗ ∗ -0.413 ∗ ∗ ∗
Seeding program used? -0.282 ∗ ∗ ∗ -0.362 ∗ ∗ ∗
Constant coefficient 3.328 ∗ ∗ ∗ 3.411 ∗ ∗ ∗
N 7,428 simulations 7,408 simulations
R2 0.029 0.030
Note: the table reports results of OLS regression models with average wait time as the dependent variable. For dummy variable effects, the simulation with no
incentive programs is the left-out category. ∗ ∗ ∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05.

if P=1, then a high-propensity agent will have a minimum
adoption probability of 15%.

Third, this function assumes that the effect of being
connected to an adopter is largerwhen adoption probability is
low.Thus, the connections to adopters have a larger influence
on potential adoption for low-propensity agents than for
high-propensity agents. This difference increases with larger
values of P.This is an artifact of the logistic model being used
here and is in linewith current findings (see, e.g., [5, 14f.]) that
show that peer effects play amore important role for adoption
decisions in low-income households.

5. Results

The following results are drawn from running 3,500 simu-
lations with the three incentive programs described above.
Approximately 25% of these simulations were run assuming
no incentives to establish a baseline for comparison. In
another 25% of simulations, the feed-in tariff was modelled,
supporting the higher-propensity (wealthier) group, 25% of
simulations implemented leasing possibilities favoring both
groups equally, and the last 25% of simulations explore the
influence of the seeding program to poorer households on
the adoption dynamics.Themodels were not run for a certain
amount of time steps but rather until all agents have adopted
the technology (i.e., until complete saturation was reached).
Since the number of time steps necessary varied between the
various model runs, the results are analyzed dependent on
the percentage of adopters rather than on time steps.Through
this uniform exploration of the results, we are able to analyze
how adoption dynamics differ based on the various policy
incentives in place and based on the two analyzed network
structures.

5.1. Influence of Policy Incentives on Saturation Times. The
influence ofmodel parameters, including the existence of cer-
tain incentive programs, on adoption dynamics is explored
through two regressionmodels summarized in Table 3. Using
the individual simulation run as the unit of analysis, these
models predict two evaluative criteria—average wait times
(Model 1) and differences in average wait times (Model
2)—as a function of model parameters specified at model
setup. These evaluative criteria are measures of the speed of

adoption and the equity of adoption dynamics between low-
and high-propensity groups, respectively.

More specifically, average wait time is defined as the
number of time steps required for 100% of agents to adopt
divided by the number of agents in the system.This measures
the average number of time steps that one must wait before
any given agent in a system adopts. Average wait time is thus
a measure of the overall speed of adoption within a given
system but ignores who is adopting. Higher values indicate
slower adoption speeds (worse outcomes), whereas smaller
values indicate faster adoption speeds (better outcomes).

The variable difference in average wait time is defined as
the average wait time among low-propensity agents minus
the average wait time among high-propensity agents. In other
words, this is a measure of the degree to which one group lags
behind the other in terms of average adoption trends. Large
positive values of this variable mean that the high-propensity
group becomes saturated much more quickly than the low-
propensity group, thus indicating lower equity (i.e., a worse
outcome). Values close to zero indicate that high- and low-
propensity groups become saturated at approximately the
same rate.

These regression models allow us to distill the enormous
amount of data generated by our computational simulations
into a relatively small set of average trends that emerge across
simulations. By integrating the incentive program dummy
variables into the model, we are able to examine the degree
to which each program influences our evaluative criteria on
average, controlling for other stochasticmodel parameters. In
both models, the left-out categories are simulations without
any incentive program.

In both models, we see that all programs appear to have
a positive effect on overall speed of adoption. This is to be
expected because, as noted above, speed of adoption does not
account for the distribution of adoption behaviors over space
or within a network. In other words, any incentive program
yields significantly better outcomes than no incentive pro-
gram.

By comparing Models 1 and 2, however, we can see
that the effectiveness of programs depends on the degree
of segregation observed in the networks. While the feed-
in tariff seems to generate the fastest saturation times in
integrated networks (Model 1), leasing programs appear to
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Table 4: Effect of incentive programs on distributional equity: integrated versus segregated social networks.

DV = difference in avg. wait time (smaller values signify greater equity)
Model 1: Integrated networks Model 2: Segregated networks

Program dummy variables
Feed-in tariffs used? 0.008 ∗ 0.024 ∗ ∗ ∗
Leasing program used? 0.007 0.006
Seeding program used? 0.003 -0.011 ∗
Constant coefficient 0.037 0.056 ∗ ∗ ∗
N 7,428 simulations 7,408 simulations
R2 0.001 0.007
Note: the table reports results of OLS regression model with difference in average wait time (distributional equity) as the dependent variable. For dummy
variable effects, the simulation with no incentive programs is the left-out category. ∗ ∗ ∗ p < 0.001; ∗∗ p < 0.01; ∗ p < 0.05.
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Figure 4: Graphical depiction of program outcomes, speed of adoption versus equity in segregated versus integrated networks.

support faster overall adoption speeds in segregated networks
(Model 2).

Evaluating these programs in terms of equity gives yet
another picture of program effectiveness. Table 4 summarizes
the potential differences in program outcomes in terms of
equity of adoption trends. Indeed, seeding programs appear
to be the only type of incentive that significantly increases
equity in terms of realizing a lower gap in the average number
of adopters within high- and low-propensity groups.

Figure 4 offers a graphical depiction of these results. The
program effect coefficients were reestimated using a measure
of equity and adoption speed that is (1) normalized to fall
in a range from 0 to 1, such that the effects of programs
are comparable across models and (2) adjusted such that
larger values indicate better outcomes and smaller values
indicate worse outcomes. Red bars indicate the estimated
effect of each program on adoption speeds, while yellow
bars indicate the effect on equity. Colored regions indicate a
90% confidence interval for each coefficient estimate, while
the outside bars delineate a 95% confidence interval. As
seen also in Table 4, only seeding programs have a positive
effect on both evaluative criteria when we assume segregated
networks. Leasing has a positive effect on adoption speeds
and no discernible effect on equity, whereas the feed-in tariff
appears to promote greater inequalities.

5.2. Characterizing Adoption Dynamics. While these regres-
sion models provide useful insights into average trends, they
also hidemuch of the richness of adoption dynamics—that is,
the process by which adoption behaviors spread throughout
the system over time. Figure 5 provides a descriptive illus-
tration of these dynamics. Each panel of this figure illustrates
trends realized across all simulation runs; bars in these figures
represent the distribution of the proportion of agents that
have adopted at different stages of the process, among high-
propensity agents (white bars) and low-propensity agents
(green bars). For any given simulation, the “stage” of process
is defined as the number of time steps that have elapsed as a
proportion of the overall saturation time. Thus, a simulation
that takes 1,000 time steps for all agents to adopt is at the 10%
mark at 100 time steps; however, a simulation that takes only
500 time steps for all agents to adopt is at the 20%mark at 100
time steps. Viewing adoption trends in this way allows us to
focus on the overall shape of adoption curves controlling for
the variation in overall saturation times (as seen in Table 3,
Model 1).

The trends seen in these figures support the results of
the models presented in Table 4. Feed-in tariffs produce
much larger inequalities between high- (white) and low-
(green) propensity groups, especially later in the process,
than we see in any other scenario. Seeding policies tend to
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Figure 5: Realized adoption dynamics under various incentive programs.

have very narrow gaps between groups over time, although
disparities to tend to increase later in the process as the
incentive programs are phased out ofmore of the simulations.
Finally, leasing programs do not appear to alter the shape
of adoption curves for either group over and above the no-
incentive scenario.

6. Conclusion

This agent-based model allows us to evaluate the effects
of various types of (simplified) incentives in a virtual

space, accounting for different societal structures.The results
demonstrate that underlying network structures of a society
have an important effect on the effectiveness of policy
incentives.

Our results suggest that policy incentives designed to
support primarily high-propensity agents might not be the
best or even correct way to induce diffusion throughout a
segregated network. In segregated networks, peer effects are
dampened by missing societal links between more and less
affluent actors. Thus, policy incentives that specifically target
actors that are more affluent may further increase energy



Complexity 13

inequality. This is an important finding for policy-makers
thinking about transferring existing incentives, for example,
best practices examples, from other contexts to their own.
An incentive that might have worked well in a relatively
integrated society can lead to extremely unjust outcomes
within segregated societies.

This underscores a need for more reliable measures of
the segregation of a society, so that policy programs can
be crafted accordingly to enhance peer effects in a way
that diffusion spreads throughout the whole social system.
Introducing programs that will properly seed underserved
communities could be one way to enhance distributional
justice. These findings are, of course, not limited to the
adoption of solar PV but within any policy domain where
governments try to foster diffusion processes through policy
interventions. Furthermore, these results can help to inform
more complex (agent-based) models, which try to map the
effect of policy incentives. They emphasize that peer effects
cannot be reduced to simple diffusionmodels but thatmodels
considering social effects need to take more realistic network
structures into account.

6.1. Limitations of this Work. The aim of this theoretical
model is to study the effect of network structures on diffusion
processes and the equity between two groups in this process.
Naturally, such a theoretical model comes with a number of
limitations. First, for simplification reasons, the model only
considers two different types of actors. Those types have to
be understood as a compilation of attributes, such as level of
income, level of education, or level of environmental concern
or geographical proximity, many of which are known to
correlate in real life. The important point is that actors with
similar attributes are either more likely to be connected to,
and thus to influence, each other (in a segregated network)
or equally likely to be connected to each other than to
actors with different attributes (in an integrated network).
Within the scope of this model, no explicit decomposition in
the different attributes and their influence on the diffusion
of the adoption of solar PV is modelled. Following this
level of abstraction, costs of solar PV are also not explicitly
modelled but are implicitly taken into account in the baseline
propensity to adopt.

Second, it may seem that the results of the model are
sensitive to the particular choice of incentive parameters. Two
parameters are chosen for each incentive, which determine
how the incentive affects the adoption behaviour of actors
in the high- and low-propensity group. The key issue is how
the assumed parameters influence the direction in which
a certain policy will influence the adoption probability in
each of the groups. While the magnitude of these parameters
influences the speed of adoption, it is not expected to change
the adoption patterns. Furthermore, conclusions are not
drawn based on findings that directly depend on the setting
of these parameters but are drawn from the comparison
between adoption dynamics in the two network structures,
given the same incentive parameters.Therefore, we donot test
the results for varying parameters.

Third, the two types of networks studied here have to
be understood as stylized network types, representing the

two extremes in which either no barriers or high barriers for
relations between two actor types exist. Future work should
expand this work by studying diffusion processes in larger
networks with underlying real-world network structures,
such as networks enxhibiting community structure.

Fourth, in order to reach an analysable number of model
parameter combinations, a very limited number of settings
for each model parameter had to be selected. Therefore,
exemplary settings were chosen, which allowed the contrast-
ing of the process with two distinct network structures while
keeping the other conditions (such as density and social
influence) constant.However, previouswork suggests that the
network density plays a crucial role in diffusion (e.g., [68]).
Therefore, it would be interesting to explore in future work,
whether changing densities and changing social influence
parameters have similar effects on the diffusion in integrated
and segregated networks.

6.2. Applied Implications ofThisWork. Despite the theoretical
focus of the model, its findings prove to be relevant in
actual policy design. Especially, but not only, in segregated
societies, public policy-makers are well advised to consider
equity effects of the policies they propose. Policies supporting
renewable energies can go a long way in empowering poorer
households and communities if they are targeted in the right
way. The findings in this work show that multiple incentives
are suited to realize the targeted outcome of increasing the
share of solar PV adopters but that not all incentives have
the additional effect of benefiting poorer households and
communities. It has to be taken into account that in some
contexts it will be most beneficial to aim for a fast diffusion,
for example, because this might drive the prices down and
would thus allow that a technology could also be adopted by
less affluent actors in the long run.However, this kind of long-
term positive effects is not always given. This work unveils
that equity effects can differ widely for different policies
and within different societal structures. It would thus be
fruitful if the assessment of how societal structures and social
influence could speed up or dampen the diffusion process
of the benefits of certain incentives would be part of policy
evaluation.

Data Availability

As these are computational simulations, interested readers
may run simulations on their own to replicate the findings.
All data used will be published at the author’s website, and all
codes will be made available for replication of models (run in
R).
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