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A B S T R A C T

The following analysis looks into auctions for renewable energy, specifically onshore wind power in Germany.
Following an agent-based modeling approach, the two most commonly applied auction pricing rules are com-
pared (uniform and pay-as-bid) and first conclusions on outcomes are drawn for future policy design. The
auctions are modeled to closely represent the auction design foreseen in the German Renewable Energy Sources
Act (EEG, 2017) and replicate their parameters.

The analysis draws on auction theory. For both pricing schemes, individually rational agents with in-
dependent valuation are assumed. As support for renewable electricity through auctions is to be established
permanently and auction rounds will be held multi-annually, a further focus lies on agents learning over time by
adapting their behavior to new information.

The model results show that pay-as-bid exhibits lower prices and thus support costs than uniform pricing,
whereas allocative efficiency suffers under pay-as-bid. Over time, one can observe a decline in the strike price,
which is due to learning effects, whereas agents' profits increase in the course of the auctions. Furthermore,
smaller actors will experience difficulties and agent diversity is likely to suffer in the long term, if this is not
accounted for in other ways.

1. Introduction

The Renewable Energy Sources Act 2017 (EEG, 2017) was in-
troduced in Germany in 2016. Under this act, auctions will determine
the future sliding feed-in premiums for the support of renewable en-
ergies according to the directive 2009/28/EC on the promotion of the
use of energy from renewable sources (European Parliament and
Council Directive, 2009) and to the “Guidelines on state aid for en-
vironmental protection and energy 2014–2020″ (No. 2014/C 200/01)
by the European Commission (2014). Starting in 2015, the first (pilot)
rounds were already executed for solar PV and in 2017, onshore wind
will become subject to tendering as well.

Onshore wind power in Germany has seen a substantial expansion
during the past decade, due to ambitious goals for climate protection
and successful support strategies implemented by the German govern-
ment and specifically the Ministry for Economic Affairs and Energy
(Bundesministerium für Wirtschaft und Energie (BMWi)). So far, a

price-based mechanism, namely a sliding feed-in premium with an
administratively set, fixed strike price was used to subsidize all wind
power plants in Germany equally (only adjusted by a certain locational
correction factor – the so-called “Korrekturfaktor der Standortgüte”
(EEG, 2017)). From this year on, the expansion will start being sub-
sidized by an auction-based support scheme, in which different projects
compete for support. A certain amount of electric capacity will be
tendered, corresponding to the EU's goals for deployment of electricity
from renewable energy sources (RES) for each member state. This
amount is to be generated by RES according to the Renewable Energy
Sources Act (EEG, 2014; EEG, 2017).

Under the pay-as-bid (PAB) pricing rule, which has been im-
plemented in the first German wind onshore auctions, the agents
holding a winning bid receive exactly their submitted bid as support for
their fed-in electricity for the following 20 years. An exemption is made
for citizens' energy companies, which will be awarded under a uniform
pricing rule and enjoy several other advantages. Prequalification
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criteria that are required by the BMWi are a valid permit according to
the Federal Immission Control Act (Bundesimmissionsschutz-Gesetz
(BImSchG, 2017)) for the participating project and bid bonds of 30
€/kW. For citizens’ energy companies, the bid bond amounts to 15
€/kW, followed by a second bid bond of 15 €/kW in case of being
successful in the auction (EEG, 2017).

This paper presents insights into whether pay-as-bid pricing induces
a more cost efficient outcome than the uniform pricing rule, the most
prominent alternative. Under uniform pricing, the lowest not accepted
bid or highest accepted bid determines the support level of all the
successful agents in the auction. The comparison usually depends on the
conditions and the environment of the auction (Fabra et al., 2006) and
has thus far not been examined for renewable energy auctions to our
knowledge.

Specifically, the question is examined in the context of the recently
introduced German onshore wind power auctions by modeling the
German auction design as precisely as possible. We then draw lessons
learned for policy makers from our results, concerning prices, effi-
ciency, as well as impacts on actor diversity.

2. Theoretical background and literature review

To find out whether a PAB pricing scheme is indeed more support cost
efficient than uniform pricing in the upcoming German onshore wind
power auctions, we applied an agent-based modeling approach in which
the agents and the setting are modeled according to auction theory. By
support cost efficiency, we mean minimizing the costs for consumers to
support the renewables deployment and thus expansion. In our definition,
we only account for direct payments to generators for fed-in electricity and
no indirect costs occurring e.g. for the necessary grid expansion or the
integration of RES. Our methodology thus builds on the foundations of
economic theory, while making use of an effective way to model decision
making (Dam et al., 2013). The focus hereby lies on agent behavior and
long-term optimization strategies in the two auction schemes.

The next section provides a short outline of the most important
auction theoretic elements that found their way into the design of our
model and the agents participating in the auctions. Auctions are one
form of market-based allocation mechanisms, which provide a support
cost efficient1 approach whenever information asymmetry between an
agent and a principal exists (McAfee and McMillan, 1987). In the
market for RES there is a basic knowledge of the cost distribution
(Wallasch and Luers, 2013). Nevertheless, an auction mechanism could
increase support cost efficiency by improving the allocation of overall
subsidies (Klessmann et al., 2015). The present paper focuses on PAB
and uniform pricing auctions2 as these are the most widely used “in
situations in which the marginal values are declining – that is, the value
of an additional unit decreases with the number of units already ob-
tained” (Krishna, 2010). This is also true for renewable energy auctions,
where multiple goods are auctioned.3

Onshore wind power auctions are multi-unit auctions. Precisely, a
certain capacity of wind power is tendered. In each round, different
bidders enter with their projects of different scopes and sizes. Since the
auctioneer procures a specific amount of power, the good can be de-
fined as homogeneous from an auctioneer's point of view according to
the theory of Myerson (1981). Nevertheless, as locations differ in their
RES potential, i.e. more or less ideal wind conditions or solar irradia-
tion, and thus capacity factors, the so-called correction factor (Kor-
rekturfaktor) under the framework of the reference yield model (Re-
ferenzertragsmodell) – which accounts for the locational quality (EEG,
2017) – ensures a level playing field for all bidders. Nevertheless, one
can argue, that the correction factor actually decreases allocative effi-
ciency, on the terms that it makes the sites with the lowest locational
quality the cheapest in terms of corrected costs. On the other hand, one
could say that the overall economic costs decrease through correcting,
because they allow for a more balanced expansion of renewable energy
generation and therefore lower system costs (grid expansion, integra-
tion etc.). For more insights see e.g. Klessmann et al. (2015) or Bade
et al. (2015). These estimations are however beyond the scope of our
paper.

Aside of the pricing scheme, a variety of other design elements can
be included in auctions. These elements help derive efficient outcomes
and adapt the auction to the needs of the auctioneer and the market
environment. In the following, a (non-exhaustive) overview on the most
important design elements used in RES auctions is presented.

Ceiling prices are an important auction design feature that is reg-
ularly applied in renewables auctions. How to set this price is a crucial
issue since it affects the level of competition and technological diversity
in technology neutral auctions (Del Río, 2015).

In the German electricity market, limit prices were set for onshore
wind power. According to the EEG (2017), a ceiling price of 7 €ct/kWh4

will be introduced in the first three rounds. Beginning in the 4th round
(01.02.2018), the ceiling price will adapt to the overall price level
dynamically (EEG, 2017).

A further important criterion for RES auctions is whether to im-
plement price-only or multi-criteria auctions. An example for multi-
criteria auctions would be to award additional points to bidders who
achieve more job creation with their projects, as is the case for instance
in South Africa (Eberhard, 2013). Prequalification criteria are another
way to influence the structure of bidders. In order to achieve a high
realization rate and to ensure the support cost efficiency of the auction
scheme (Maurer and Barroso, 2011), two prequalification criteria were
implemented in Germany. Before the potential bidders can participate
in the auction, they need to obtain a valid immission control permit for
their specific project and a bid bond in form of a guarantee of 30 € for
every kW of their wind project's generation capacity.5

The EEG (2017) also contains a so-called “de minimis clause", which
states that projects with a capacity of less than 750 kW don’t participate
in the auctions but fall under a feed-in tariff scheme in order to include
small actors and thus maintain actor diversity. Other than that, the
German scheme is price-only (EEG, 2017). There are many other fea-
tures from auction design that can be made use of in auctions for re-
newable energy, but as this analysis focuses on the difference between
the two pricing rules, only this short outline is presented. For further
auction theoretic analyses of renewable energy auctions, see e.g.:
Ehrhart et al. (2015) or Kreiss et al. (2017).

The second important strand of literature for the present analysis is
on agent-based modeling (ABM). According to Bonabeau (2002), agent-
based models have certain benefits over other modeling techniques:

1 We also discuss allocative efficiency of the two different auction schemes later on.
The concept of allocative efficiency refers to the actual costs of the supported projects –
i.e. as to how the resources are distributed. Allocative efficiency by definition is given
when the price function, in our case the bid, intersects with the marginal cost curve, i.e.
social surplus is maximized and no distortions in the form of deadweight loss occur
(Markovits, 2008).

2 We distinguish between static auctions, which include the two assessed formats (pay-
as-bid and uniform pricing) and dynamic auction formats consisting of several con-
secutive bidding rounds. Dynamic auction formats allow agents to react on their com-
petitors’ bidding behavior during the course of an auction, whereas static auctions are so-
called “one shot” auctions, meaning that each agent submits a bid and these bids are then
ranked in order of their respective price.

3 Single unit auctions, on the other hand, are usually applied when only one good with
uncertain valuation to the auctioneer is sold (Krishna, 2010). In RES auctions, this is the
case when a certain project is auctioned for realization, e.g. the offshore wind power
auctions in Germany or in Denmark, in which the participants bid for the right of im-
plementing one specific offshore wind farm, for which the plans have been already out-
lined.

4 From here on, we will refer to €ct simply as ct.
5 In contrast, citizens' energy companies only have to provide an advance guarantee of

15 €/kW and have to provide the other 15 €/kW only if they have bid successfully (EEG,
2017). The immission control permit only has to be obtained, if they were successful in
the auction and is thus not a prerequisite for participation. Citizens' energy companies
also benefit from a prolonged realization period compared to the other bidders.
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being able to capture emergent phenomena, providing a natural de-
scription of a system, and being flexible in regard to changes. Moreover,
Axtell (1999) highlights that ABM has the property of establishing
sufficiency theorems. As the main idea behind ABM consists of simu-
lating the interactions between individual agents over time (Masad and
Kazil, 2015), it is important to understand what exactly defines an
agent. Wooldridge (2006) describes agents as software-based computer
systems located in some environment, who aim to reach their design
objectives by autonomously taking actions. Furthermore, Wooldridge
and Jennings (1995) define four major properties of agents: autonomy,
social ability, reactivity, and pro-activeness.

The following overview shows past applications of ABM in energy
research. Several studies applying the ABM approach were published in
energy research, whereas they often model an electricity (spot) market
with a vast amount of agents in frequently occurring auctions, as e.g.
power market simulations in PowerACE (Genoese and Fichtner, 2012)
or the EMLab Generation Model by TU Delft (Chappin, 2013). Fur-
thermore, a substantial amount of literature exists where ABM has been
used to display and model complex interactions on the broader elec-
tricity market, i.e. modeling different agents' (TSOs, generators, reg-
ulatory institutions, consumers) behavior and their respective interac-
tions and sometimes contradictory objective functions and constraints,
see e.g. Kiose and Voudouris (2015) and Widergren et al. (2006). ABM
has also been used to assess different market design elements and po-
licies for renewable subsidies, as shown in currently published research
by Iychettiria (2017). Auctions for renewable energy have, to our
knowledge, not yet been analyzed using an ABM design. Among the
studies on agent-based electricity market models, comparing PAB and
uniform pricing has been a popular research question in the past
(Weidlich and Veit, 2008). Further scientific energy-related auction
literature applying an ABM approach comprises e.g. Kiose and
Voudouris (2015), Veit et al. (2009), Bunn and Oliveira (2001), or Li
and Shi (2012) among others.

Adaptation is also an important feature of agent-based modeling
(Dam et al., 2013). As this paper focuses on the procurement auctions of
renewable energies with a very clear time horizon and only a limited
amount of rounds, the possibility of learning effects for the agents is
limited. Nevertheless, a certain amount of learning is implemented as
shown in the following section.

3. Modeling framework

To obtain an accurate model of the German onshore wind power
auctions, we implemented its basic design in an agent-based modeling
framework. Specifically, the program was written in Python using the
agent-based modeling infrastructure mesa.6

3.1. Auction design

The auctioning procedure takes place as follows: The agents submit
their (sealed) bid in each round consisting of a price in ct/kWh and a
corresponding capacity of their individual projects to the auctioneer,
who sorts the bids from the lowest price to the highest. If two agents bid
an equal price, the one with the lower capacity will be preferred. This
approach holds for both pricing schemes. Bids are chosen as long as the
cumulative amount of capacity is less than the demand. Immediately
after the procured quantity is reached or surpassed for the first time, the
auction round is closed. This procedure has been directly reproduced by
our model.

In the auctions held by the German government, the auctioneer
publishes the successful power quantities in detail, as well as the lowest
and highest accepted bids together with the weighted average winning

bid. The actual bid prices remain private information of the auctioneer.
The agents in this simulation learn the weighted average overall bid
(see Fig. 1).

According to the EEG (2017), a ceiling price of 7 ct/kWh will be
introduced in the first three rounds. Beginning in the 4th round
(01.02.2018), the ceiling price will adapt to the overall price level
dynamically. The new ceiling price will consist of the highest still ac-
cepted bids’ average from the three previous rounds increased by 8%
(EEG, 2017). This regulation has been fully implemented in our simu-
lation of wind power auctions. The EEG (2017) clearly states the
amount in MW, which will be auctioned in each round until the year
2020 and beyond. The German government plans to have auctioned a
total amount of 11.3 GW (EEG, 2017) by the end of 2020 and thus an
average amount of 807.14 MW will be procured in each auction round.
To simplify our simulation, the auctioned quantity per round will equal
800 MW. Due to constraints in the transmission network capacities and
the probability of congestion, Germany has been divided in two geo-
graphic zones for onshore wind power in the EEG (2017). The so-called
“grid-expansion area” will have a limited yearly auction volume which
amounts to 58% of the yearly average of the installed capacity from
2013 to 2015 in the specific area (EEG, 2017). This concept will not be
taken into account in the simulation, since the EEG (2017) doesn’t
specify how the two zones will be implemented. Furthermore, this
paper analyses the differences between the two static auction formats,
such that the regional split is not crucial for the comparative analysis of
our model.

A further simplification is that we do not model the citizens' energy
companies' exemption clause that enables them to bid into a uniform
pricing scheme. In fact, citizens' energy companies receive the highest
awarded bid as their remuneration level. Although this will certainly
influence the bidding behavior under PAB, this study focuses on the
difference between the two pricing schemes in a more generic ap-
proach, and thus our results would be diluted by implementing the
exemptions.

3.2. Characterization of the agents

When simulating the onshore wind power auctions in Germany, it is
crucial to model the agents appropriately. An agent is assumed to be-
have rationally, i.e. tries to maximize her possibility of winning (over
time). Furthermore, the agent is characterized by her attributes, namely
the size of her wind power project, and her bidding behavior – the bid
function and the implemented learning algorithm.

Fig. 1. Simplified learning algorithm of agents in wind power auctions.

6 For further information on mesa, please refer to https://github.com/projectmesa/
mesa.
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The agents' costs stem from a recent study on onshore wind costs in
Germany (Wallasch and Luers, 2013). Since the largest part of the po-
tential locations have a quality factor of less than 100%, which is de-
fined by a reference wind turbine under certain assumptions on the
location and wind speed, (BMWi, 2015) we limit the range of projects to
a factor of 70–100%. These levelized costs of electricity (LCOE) had to
be adjusted with a correction factor to be “translated” into a project
corresponding to a 100% quality factor. By adjusting the project costs,
allocative efficiency could however be lowered: specifically, the 70%
quality region, which initially exhibits the highest costs, becomes the
cheapest after the adjustment (see e.g. Klessmann et al., 2015 for fur-
ther elaborations on this). Since all of the costs amount to an average of
roughly 6.7 ct/kWh (see Table 1), we assume a cost range of 6.4–7.0 ct/
kWh.

Taking into account a certain degree of learning effects due to
multiple realized projects and overall learning effects in the industry, an
option for cost digression was added to the model. Whenever an agent
lands a successful bid in an auction – always assuming her project is
implemented successfully – her cost in ct/kWh decreases by a certain
factor. According to Wallasch and Luers (2013) the LCOE for onshore
wind power in Germany decreased by 12% on average between 2012/
13 and 2016/17. In this period of four years, the average cost decrease
amounts to around 2.9% p.a.7 Since the auction rounds take place every
three months (in general), we therefore approximate a cost decrease of
around 0.725% (0.029/4 = 0.00725) between two auctions. To ac-
count for the randomness of the process, the final factor for each agent
is drawn independently from a uniform distribution with bounds 0 and
0.015 – thus 0.725% being the mean value – which leads to factors in
the range between 0.985 and 1.

According to BWE (2015) project developers make up the main
share of actors in the German onshore wind power market during the
implementation phase from 2012 until the first half of 2014. Project
developers usually implement a certain project and afterwards sell it to
other market participants. Moreover, the residual share of the installed
capacity during the implementation phase – in a decreasing order –
consists of citizens' energy companies,8 financial investors, local and
regional utilities, big utility companies, international investors and in-
dustrial companies (BWE, 2015). In order to design the model effi-
ciently, the three largest types of participants were chosen as agent
types: project developers, citizens' energy companies and financial in-
vestors.

Introducing the correct share of each agent type participating in the
auctions is crucial for a realistic auction simulation. In Germany, pro-
ject developers account for roughly 64%, citizens' energy companies for
16% and financial investors for about 10% of the installed wind on-
shore capacity from 2012 until the first half of 2014 (BWE, 2015). Al-
together, the aggregated share of the three agent types equals around
90%. Assuming, for simplification reasons, the whole market consisted

of the three aforementioned agent types, their shares would be 71%,
18% and 11% respectively.

From 2013–2015, the average installed capacity amounted to
roughly 3500 MW in each year (Deutsche Windguard GmbH, 2016).
Applying each agent type's share, the annually installed capacity of
each agent type amounts to 2485 MW, 630 MW and 385 MW respec-
tively. Dividing these figures by the corresponding average capacity of
each agent's project, the following numbers were derived (see Table 2).

Furthermore, after each round a number of new agents are drawn to
participate in the next auction. Their numbers are drawn from a dis-
crete uniform distribution with the minimum and maximum values
depicted in Table 2 to provide a realistic approximation. More new
agents enter in the citizens’ energy company category. This is necessary
to uphold the balance between the different agent categories.

The corresponding quantity offered by each agent is also drawn
from a discrete uniform distribution. To model the difference in the
ability of realizing certain sizes of projects, each type is assigned a
different distribution. Derived from BWE (2015) on the wind onshore
market in Germany, the authors concluded the ranges depicted in
Table 2.

Agents’ bidding behavior over multiple rounds also differs: as citi-
zens' energy companies generally have a limited amount of resources
and focus on wind power projects in close range to their community
(Nestle, 2014) it is assumed in the simulation that those agents don’t
participate in the following round once they’ve landed a successful bid
(Grashof et al., 2015), which is as well prohibited by the EEG (2017),
foreseeing a one year waiting period. The time until re-entry into the
auction is modeled as a uniformly distributed, discrete random variable
that lies between one and two years (i.e. four to eight rounds). In
contrast, project developers and financial investors have the ability to
participate immediately in the following round after having won a bid
(Grashof et al., 2015). Due to model simplification reasons, we do not
have bidders enter multiple projects in one round. Successful project
developers and financial investors therefore immediately participate in
the next round with a new power capacity that is again drawn randomly
from the distributions depicted in Table 2.

Although the EEG (2017) foresees a minimum bid quantity of
750 kW (“de minimis clause”), our simulation does not explicitly con-
tain this design element in form of a minimum quantity for partici-
pating in the auction. Since onshore wind power turbines with a ca-
pacity of at least 3 MW make up the largest share of the recently
installed wind turbines (BWE, 2015), the “de minimis clause” is in-
directly taken into account by making 3 MW the smallest potential
project size to be drawn from.

It is moreover assumed that larger agents can bear higher risks since

Table 1
Costs for wind onshore in Germany accounting for the correction factora.

Locational wind
quality

Actual average
costs (Wallasch and
Luers, 2013)

Correction factor
(EEG, 2017)

Corrected costs
in the auction

70% 8.6 1.29 6.66
80% 7.8 1.16 6.72
100% 6.7 1 6.7

a This table shows the costs for wind onshore in Germany before and after accounting
for the correction factor according to the locational wind quality (Standortgütefaktor).
Specifically, after accounting for the correction factor, the corrected costs in the auction
differ only slightly for all locations.

Table 2
Agents’ distributiona.

Parameter Project
developers

Citizens' energy
companies

Financial
investors

Number of each type 100 60 14
Cost distribution range

[ct/kWh]
6.4–7

Range of capacity bid
[MW]

10–40 3–18 15–40

Average cumulative
capacity bid per
round [MW]

2500 630 385

Discount factor 0.95 0.6 0.9
New agents in each

round
0–2 3–6 0–2

Time span t = 0,1,…,13 (equals 14 auction rounds)

a This table shows all agents’ model input parameters. Most factors are drawn ran-
domly from distributions. The discount factor is chosen by the authors to reflect differ-
ences in agents' long-term optimization. The results of the analysis also hold when these
factors are varied (the interested reader can request sensitivity results directly from the
authors).

7 − =1.12 1 0.0294 (p.a.).
8 The EEG (2017) defines a “citizens' energy company” for the first time (see EEG,

2017).
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they can better diversify their portfolio and command the resources for
long-term optimization. Citizens’ energy companies – as the smaller
auction participants – can bear the least risk (Klessmann et al., 2015).
We therefore assume that winning a bid in a future round is less pre-
ferable for them compared to larger participants who have more op-
tions for bidding strategically and diversifying (see e.g. Del Río and
Linares, 2014). They thus discount future revenues more heavily, as
shown in Table 2 beforehand.

3.3. Bid functions

In auction theory, the bid function maps an agent's cost for realizing
the project (or valuation of a good) to a bid price. Agents can receive b
(their bid) under PAB, the highest accepted or lowest not awarded bid
in uniform pricing, or 0 depending on the auction's outcome, and try to
maximize their profit (Krishna, 2010).

3.3.1. Uniform pricing
Uniform pricing signifies that all successful bidders receive the same

remuneration, which in our model is determined by the lowest rejected
bid. The bid function is derived from auction theory. Several studies
have shown, that bidding one's own cost in a multi-unit auction with
uniform pricing (when the agent only places a bid for one unit) or in a
second price auction – the single unit equivalent – is a weakly dominant
strategy (Milgrom, 2004).

=b ct t

In our simulation, agents therefore bid truthfully (their exact costs
ct) in every round. According to theory, the outcome of a functioning
uniform pricing regime is incentive compatible9 (Klemperer, 2004).
Uniform pricing serves as a benchmark case in the analysis, as the
bidding strategy is not influenced by parameters other than the agent's
cost.

3.3.2. Pay-as-bid
Under discriminatory pricing rules (first-price sealed-bid and PAB),

successful agents are paid exactly their bid bt. Due to this fact, bidders
will at least bid their individual cost, usually with a certain margin on
top. In auction theory, this behavior is known as “bid-shading”
(Menezes and Monteiro, 2005). Under the PAB pricing mechanism, the
agent maximizes her expected profit π over her chance of winning and
the amount received in case of being successful by adjusting her bids
accordingly and taking into account the possibility to win in the fol-
lowing rounds. In general, the higher her bid is, the lower her prob-
ability to win in the auction but the higher the profit in case of winning
(e.g. Samuelson, 1986, McAfee and McMillan, 1987). Since the German
onshore wind power auctions are designed as sequential multi-unit
auctions, the bid vector b contains all the bids from the current round t
until the last round in T. The discount factor is 0 < δ<1, since winning
in a future round is less favorable (Sugianto and Liao, 2014), and ct is
the agents’ specific cost in round t. Assuming that the agents participate
with only a single project in each round, they can only take part in the
following rounds with their specific project if their current bid is un-
successful. Consequently, the expected profit in one of the following
rounds has to be adjusted by the probability of losing in the past auc-
tions. Thus, the current bid not only influences the current expected
profit, but also the future ones, as the profit of the specific project is
maximized taking into account a specific period of time and the ex-
pected probability of winning over all auction rounds. Adjusting the
discount factor δt enables to account for the specific risk aversion of
each agent type. The expected utility is calculated in each round, with T
being the final round.

∏
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x
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As agents include the level of competition into their expected profit,
the concept of order statistics (Ahsanullah et al., 2013) has been im-
plemented. In order to determine the probability of submitting a suc-
cessful bid, the agent assumes n − 1 participants (without her) with ns
(successful) bidders being able to win in the auction round. Therefore,
at least the nsth lowest out of the n− 1 other participants’ bids has to be
higher than her own one bt. The agents assume the competition and the
number of winners to be the same as in the preceding auction round.
Due to a lack of information in the first round, they assume the number
of competitors to be 150 and the number of possible winners to be 50.
We further introduce a cumulative distribution function (CDF). This
function F(·) captures an agent's belief on the other participants’ bid
distribution and specifically, the probability that another bid bj is
lower, hence Pr (bj < bi). Consequently, 1−F(bi) depicts the prob-
ability of the agent's own bid being lower than her opponent's. Based on
the approach in Ahsanullah et al. (2013), we can calculate the prob-
abilities in the following way:
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Although the above equation is based on the auction-theoretic
concept of first-price sealed bid auctions (McAfee and McMillan, 1987),
we won’t derive a bid function taking into account the other bidders’
behavior. In this simulation, the above equation will be solved using
maximization algorithms. Citizens’ energy companies use this bidding
strategy under the PAB scheme in the simulation as well, although their
remuneration according to the EEG (2017) is based on the highest
awarded bid (i.e. uniform pricing). Our approach can be justified, since
these companies will conduct some sort of bid-shading from an auction
theoretical point of view either way. Bidding their own cost would be a
weakly dominant strategy if their remuneration was based on the
highest awarded bid by a non-citizens’ energy company. Since this is not
the case, their own bid might be the highest one awarded and thus they
will put a mark-up on their cost to earn a profit.

3.4. Learning algorithms

Agents, as autonomous entities, should be able to adapt their be-
havior to changes in the system to simulate a realistic environment and
learn from past occurrences. Information provided by the auctioneer
flows into the learning algorithm implemented in the simulation for the
PAB pricing rule. Each agent optimizes her expected payoff over the
entire time horizon. As shown previously, the expected profit depends
on the CDF's parameters. The CDF is modeled as a normal distribution,
similar to modeling the distribution of the market clearing price in
electricity markets (Azadeh et al., 2012; Bhattacharya, 2000;
Rahimiyan and Rajabi Mashhadi, 2008, 2007).

Therefore, the mean value (μ) can be seen as a central configuration
parameter besides the standard deviation. The agents’ learning algo-
rithm consists of adapting μ to new information generated throughout
the course of the auctions. In the first round, the assumptions on μ of
F(·) are based on each agent's own signal (their individual cost) which is
the best approximation regarding the other agents’ bids (Krishna,
2010). In the course of the auctions, new information becomes avail-
able, which is incorporated by the agents: they adjust the CDF, by up-
dating μ with the last round's overall mean bid. This definition of

9 Incentive compatibility is given when a mechanism induces bidders to reveal their
true preferences in order to achieve the best possible outcome (Krishna, 2010).
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learning is one of the main properties of ABM (Wooldridge and
Jennings, 1995): the environment – in our particular case the overall
mean bid and the number of (successful and overall) participants –
influences the agents’ behavior and in return the agents’ individual bids
have an impact on the overall average bid.

3.5. Simulation rounds

In order to derive an accurate answer to the research question, both
pricing rules were simulated in 50 iterations. Each iteration consists of
14 auction rounds with 800 MW of power demand auctioned respec-
tively, which corresponds to the average auctioned amount until the
end of 2020 (EEG, 2017). Each agent's bid vector is calculated before
the auction round takes place by using the “SLSQP”10 algorithm (Kraft,
1988). Using this specific algorithm has the advantage of defining
boundaries for the optimization and thus not obtaining extreme values,
which would be a possible result from applying a standard normal
distribution. We employ the agents’ own cost as an initial guess for the
maximization algorithm. In all simulations executed, algorithm and
model generate realistic values: within each bid vector, the corre-
sponding bids decrease over all rounds, i.e. the later an auction takes
place, the more aggressive the agents’ bids become. This also leads each
round's current bid (bt) – which determines the specific auction's out-
come – to decrease (c.p.) over time.

4. Results and discussion of the outcome of the two pricing
schemes

In this section, the results of both pricing schemes are presented and
analyzed in detail, followed by a comparison of the pricing rules.

4.1. Uniform pricing

Looking at the boxplots in Fig. 2, it becomes clear that the median
price under the uniform scheme falls over time.

Running a regression to prove the hypothesis statistically, we re-
ceive highly significant coefficients, i.e. the further the model advances,

the lower the final price becomes. This finding is in accordance with the
experience of onshore wind power auctions in Brazil, where prices fell
during the course of auction rounds from 2009 to 13 by about 40%
(Förster and Amazo, 2016). It could also be largely observed in several
European auctions for other renewable technologies (see e.g. IRENA,
2017, Tiedemann, 2015 or Fitch-Roy and Woodman, 2016).

In contrast, the weighted average profit per round increases. The
average profit is calculated as the difference between the agents’ re-
ceived remuneration and their individual cost weighted by their bid
volume. It can be interpreted as the average mark-up on the successful
bidders’ cost. Since the cost reduction applies only to successful bidders,
the new entrants face relatively higher costs. Due to the fact that the
price under the uniform mechanism is determined by the lowest not
accepted bid, which in most cases is submitted by a new or recently
entered participant, the decrease in prices does not outweigh the cost
reduction. Therefore, although prices are falling, the successful bidders’
profit rises throughout the auctions.

Another aspect that should be examined is how the number of
successful bidders evolves over time. The number of project developers
and financial investors stays approximately on the same level with a
mean value of around 23 and 6 per round respectively. Citizens’ energy
companies have their maximum number of successful bids in the first
round, but due to the restriction of being able to realize only one project
in every one to two years, their number falls during the course of the
auctions. These restrictions to participation are firstly due to the
aforementioned regulations (EEG, 2017) but also due to specific char-
acteristics of smaller agents, i.e. limited financial resources or less
ability for risk diversification and long-term planning (Grashof et al.,
2015). Their overall mean value amounts to roughly 5 per round.

4.2. Pay-as-bid pricing

In the following, we examine the effects under PAB pricing. As in
the uniform format, we can observe falling prices under the PAB pricing
rule (see Fig. 3).

Falling prices over the rounds is contradictory to Weber (1983) who
showed that in two sequential auction rounds, the expected (average)
price of the first and second round are identical in the case of con-
tinuous bidders. Jeitschko (1998) who examined the behavior in a
microeconomic (selling) auction, modeled two rounds and three

Fig. 2. Development of prices in uniform pricing scheme over time (14 rounds).

10 Sequential Least Squares Programming.
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bidders with a discrete distribution of types (high and low valuation)
and put more emphasis on the influence of learning.

Nevertheless, he also predicted the expected winning bid in the first
and second auction to be the same, due to three effects: first of all, more
bidders participate in the first auction, leading to higher priced bids,
whereas in the second one the high valuation type bidder doesn’t par-
ticipate, which leads to less competition and thus a lower average
bidding price.

This property does not apply to our simulation, since successful
bidders (except for citizens’ energy companies) do participate in the
following round. Secondly, since it is more likely that the opponent
bidders are low value types in the second auction, high value partici-
pants bid a low price on average. This fact is similar to our model, since
agents include the increasing overall mean bid in their bid function
through the CDF and thus are able to place higher bids on average.
Finally, Jeitschko (1998) states that with the second round being the
final one, high value agents submit higher bids as they need to win this
auction as the alternative would be receiving none of the goods. In our
simulation we observe the same effect. The agents have a lower pos-
sibility of winning in one of the following rounds and thus the in-
dividual bids in the bid vector decrease throughout the rounds.

Jeitschko (1998) concluded that the first two effects offset the third
one, making the expected price equal in both rounds. In our case, the
main reason for falling prices seems to be the third effect, which to-
gether with the cost reduction leads to a decrease in prices. Despite
lower prices, the average profit is increasing. Due to the cost reduction,
successful bidders face decreasing costs for their projects, whereas un-
successful participants’ costs remain the same throughout the auctions.
The bidding function takes the average overall mean bid into account,
which decreases more slowly than the weighted average successful bid
under PAB. Thus, although the successful bidders face lower costs with
advancing rounds, they increase their bid-shading since the average
overall mean bid consists of successful and unsuccessful bidders, but
only winners’ costs decrease over time.

The average number of agents per round develops as follows: on
average 23 project developers and 6 financial investors submit a suc-
cessful bid per round. Around 16 citizens’ energy companies were
successful in the first round, but due to the restriction of being able to
realize only one project in every one to two years, their number de-
creases sharply during the auctions with an overall mean value of

roughly 6 winning bids per round. This fact is in accordance with the
concern expressed in Nestle (2014), who states that by implementing
auctions, many small citizens’ energy companies won’t be able to par-
ticipate in the onshore wind power market in the long term.

4.3. PAB leads to a more support cost efficient outcome

To see whether PAB is more support cost efficient than uniform
pricing in the German onshore wind power auctions, we examine the
outcomes under both pricing rules (see Table 3). In our modeling re-
sults, we can observe that PAB generates a statistically significant
1.08% lower average price compared to uniform pricing and a 14.69%
lower mark-up on the cost on average. This effect can be attributed to
the way the agents maximize their expected profit, taking into account
the competition and their opponents’mean bid in the respective auction
rounds.

This shows that PAB (under the aforementioned assumptions) gen-
erates a slightly more support cost efficient outcome than the uniform
pricing rule in the German onshore wind power auctions, which is,
nevertheless rather insignificant in economic terms. To approximate
overall savings over the 20 year duration of the awarded feed-in pre-
miums for both pricing schemes, we assume 1600 full load hours p.a.,
an overall installed generation capacity of 11,300 MW and an average
electricity price of 35 €/MWh. Without taking into consideration the
time value of money (i.e. without discounting to the present value),
uniform pricing will lead to support payments of around 10.74 billion
€, whereas the payments under PAB amount to around 10.49 billion €.
This leads to savings of around 253 million €, or around 2.36%. From a
welfare theoretic perspective, uniform pricing leads to 871.5 million €
of producer rent (price received less the cost) over the 20 years,
whereas PAB leads to a producer rent of 743.4 million € and thus to a
128 million € (14.7%) lower mark-up.

Regarding the allocative efficiency, we examine whether the pro-
jects with the lowest costs are successful. Therefore, in each round we
calculate the average cost in ct/kWh of the projects with the lowest
costs until the auctioned volume is reached and compare them with the
average costs of the successful projects. We are able to show that under
PAB allocative efficiency is not always reached. This is due to the fact
that it is possible that low-cost projects increase their mark-up due to
bid-shading up to the point, that bidders with higher costs but a lower
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Fig. 3. Development of prices under the PAB pricing scheme (14 rounds).
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mark-up are successful. In the case of uniform pricing in our model,
allocative efficiency directly results from the assumption of incentive
compatibility as the participants always submit their true costs.
Consequently, the projects with the lowest costs will always be suc-
cessful.

4.4. Discussion

(Pilot) auction rounds that have been executed, e.g. in Spain show
questionably low levels of support, leaving doubts whether agents ac-
tually bid their true costs (Del Río, 2016) and whether the projects will
actually be realized. Looking into RES auctions in Germany (ground-
mounted PV pilot), relatively low prices have been observed compared
to the previously fixed level of support. These results as well as our
simulation outcomes demonstrate that determining the support level
for RES via auctions, usually leads to lower feed-in tariffs/premiums.
Whether this can be appointed to truthfully revealed costs or rather
strategic underbidding remains to be seen in the longer term.

In regard to our model, although agent-based simulations provide
an appropriate modeling tool to simulate complex systems and real-
word phenomena, its usage entails a distinct disadvantage. Whenever
models involve human agents, usually soft factors as irrational behavior
and complex psychological features are difficult to quantify. Since these
input parameters and the data used in models usually lack accuracy, it
might be dangerous to solely base the decision-making on the quanti-
tative outcome of an agent-based model (Bonabeau, 2002). In the case
of this simulation, the comparative advantage of PAB should hold under
the predefined assumptions.

By examining renewable energy auctions, we made the implicit
assumption that auctions are generally suitable for the allocation of
renewable energy subsidies and lead to a more support cost and allo-
cative efficient outcome than traditional support mechanisms.
Suitability of auctions is however only given, if there is enough com-
petition, i.e. supply is greater than demand. Otherwise strategic bidding
and collusion can lead to higher prices, depending on the respective
market situation as well as the implemented scheme. This leads to the
conclusion, that under certain assumptions, fixed-price schemes might
be a better option (Hailu and Schilizzi, 2004).

The pricing rule, which was the main focus of our analysis, plays an
important role for both the cost and allocative efficiency of an auction.
In the uniform pricing simulation agents always bid their true costs
under the assumption of symmetric, single-project, and risk-neutral
participants, as this bidding strategy is weakly dominant according to
auction theory. This result changes, however, when bidders submit
multiple bids in the uniform pricing auction, as it incentivizes them to
bid strategically (Ausubel et al., 2014). Thus, by bidding with several
projects at different prices, participants might try to determine the
strike price with a high bid and at the same time try to secure another
project with a substantially lower bid or by demand reduction. In-
vestigating this behavior further is nevertheless beyond the scope of our
paper. In contrast, empirical evidence and models in which the as-
sumptions are relaxed, suggest that a certain amount of bid-shading

occurs under uniform pricing. The reason might be either irrational
behavior or strategic bidding in the form of demand reduction, de-
pending on whether the scheme is lowest rejected or highest awarded
bid (de Keijzer et al., 2013; Ausubel et al., 2014). Nevertheless, this
agent-based simulation should be considered as a starting point, where
uniform pricing is implemented as a benchmark model. Since the as-
sumptions required by auction theory were fully implemented, the in-
centive compatibility of uniform pricing is given in this case.

Moreover other factors are important as well. While we tried to
capture as many of these factors as possible, there are some limitations
to our analysis: first of all, the model doesn’t account for the influence
of realization probability. It would be interesting to perform more
sensitivities to see whether the observed falling prices are a result of our
assumptions on cost digression.11 For simplification purposes, multiple
projects are absent in the simulation. Maximizing outcomes with mul-
tiple projects would yield a different bidding behavior compared to
only maximizing expected profit for one project. Further limitations due
to simplification are that in the German auction scheme, only the
average winning bid is published. In this model, the agents learn the
average overall bid.

Finally, our model outcomes (prices) depend largely on the assumed
price ranges and thus it has to be seen in the future whether these prices
occur in reality. Furthermore, actual auction outcomes also depend on a
multitude of external factors, e.g. the development of electricity prices
or the political and economic situation, which cannot be accounted for
in our model. Nevertheless, the developed simulation model can be
regarded as a first step in the scientific literature following an agent-
based approach to model renewable energy auctions.

5. Conclusions and policy implications

In the present analysis, we use an agent-based modeling approach to
assess the future wind onshore auctions in Germany planned for 2017.
In general, it can be observed that prices fall in the auctions over time,
and that furthermore smaller actors' participation decreases over the 14
implemented rounds. Moreover, we provide insights into the perfor-
mance of the two most prominent pricing rules and show how pay-as-
bid compares to uniform pricing in auctions for onshore wind in the
German market. We demonstrate that pay-as-bid has slightly lower
prices on average which directly translate into a slightly lower producer
rent (lower mark-up by the bidders on their respective bids). This dif-
ference is however marginal in economic terms (total support costs),
making up 2.36% or 253 million €. Moreover, the structure of suc-
cessful bidders changes over time: the number of smaller agents (the
citizens’ energy companies) decreases.

It will be very interesting to compare these simulated outcomes to
those of the actual wind power auctions, that the German government
will conduct, starting mid-2017.12 So far, our modeling results are in
line with outcomes for the PV auctions that already started in 2015 (i.e.
low prices that are decreasing over time) as well as outcomes in other
EU and non-EU countries (e.g. Förster and Amazo, 2016).

The following policy relevant findings result from our analysis: While
pay-as-bid generates slightly lower prices in the German wind onshore
auctions than uniform pricing, in terms of economic (support cost) effi-
ciency, the pricing mechanisms do not differ substantially. It can fur-
thermore be stated that no matter which auction design is implemented,

Table 3
Comparison between uniform pricing and PABa.

Uniform PAB

Average price [ct/kWh] 6.47 6.40
(−1.08%)***

Average profit [ct/kWh] 0.241 0.2056
(−14.69%)***

Average costs of cheapest projects [ct/kWh] 6.2290 6.1944
Average costs of awarded projects [ct/kWh] 6.2290 6.1970 [+0042%]***

Levels of significance: * p < 0.10, ** p < 0.05, *** p < 0.01.
a Relative deviation between the two pricing schemes in parentheses, deviation com-

pared to the cost of the cheapest projects (in the case of PAB) in square brackets.

11 In sensitivity analyses performed without or with lower cost digression im-
plemented, the prices still exhibited a certain decrease although it was lower than the one
shown in our model results. If interested, all sensitivity results can be requested directly
from the authors.

12 Since the initial submission of our study, the first German wind onshore auction took
place. The auction resulted in an average awarded price of 5.71 ct/kWh, with the lowest
awarded bit amounting to 4.2 ct/kWh and the highest to 5.78 ct/kWh. 807 MW were
awarded in this auction round, with 256 bids – amounting to 2137 MW - submitted. Out
of the 70 awarded bids, 65 (93%) were submitted by citizens' energy companies, thus
amounting to roughly 96% of all awarded capacity (Bundesnetzagentur, 2017).
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smaller actors will experience difficulties and agent diversity is likely to
suffer in the longer term, if this is not accounted for in other ways. This
holds for both uniform as PAB pricing, showing that there are a lot of other
auction design elements to consider besides the pricing rule.

Interesting expansions of our model would be to enhance the agents'
utility functions by implementing more parameters – e.g. predicted
electricity prices or the location and wind speed of a project. It would
also be interesting to see the agents’ reaction to disruptive changes in
the market environment. Future research could also take into account
the outcomes of auction experiments aiming to better approximate
human behavior in the tendering process.
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