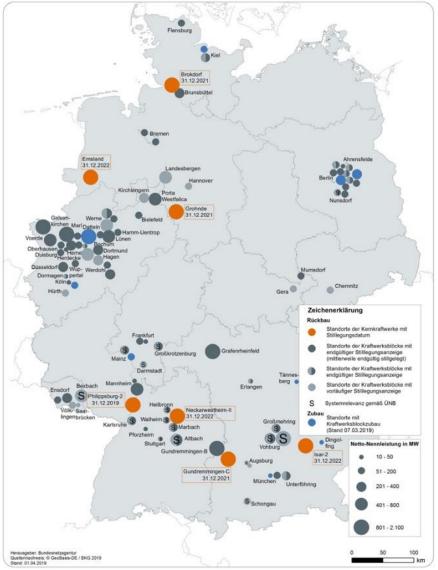


Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Projektpartner:

- 1 Begrüßung und Projektvorstellung
- 2 Überblick der angewandten Methodik
- 3 Entwicklungen im Referenzszenario (REF)
- 4 Aufteilung der deutschen Preiszone (SPLIT)
- 5 Einführung eines Kapazitätsmechanismus in Deutschland (CRM)
- 6 Einfluss von Nachfrageflexibilisierung (DSM)
- 7 Fazit und Diskussionsrunde

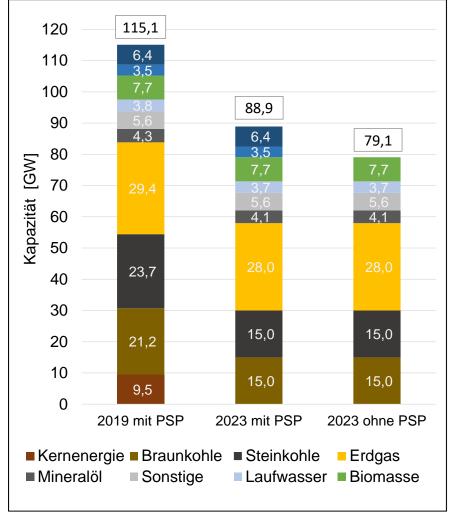

- 1 Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

Entwicklungstreiber der Versorgungssicherheit

1. Veränderungen im Kraftwerkspark

- Umfangreiche Stilllegungen von gesicherter Kraftwerksleistung durch:
 - beschlossenen Kernkraftausstieg
 - unrentable Kraftwerke
 - abzusehenden Kohleausstieg
- Hoher Stilllegungsanteil in Süddeutschland

Quelle: BNetzA (2019) Kraftwerksstilllegungsanzeigen

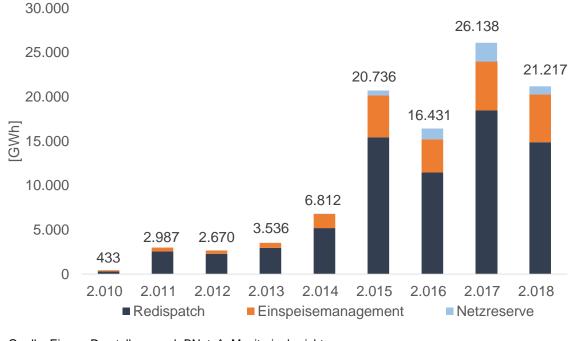

- **Projekt AVerS**
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

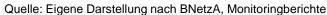
Entwicklungstreiber der Versorgungssicherheit 1. Veränderungen im Kraftwerkspark

Entwicklung der gesicherten **Kraftwerksleistung in Deutschland:**

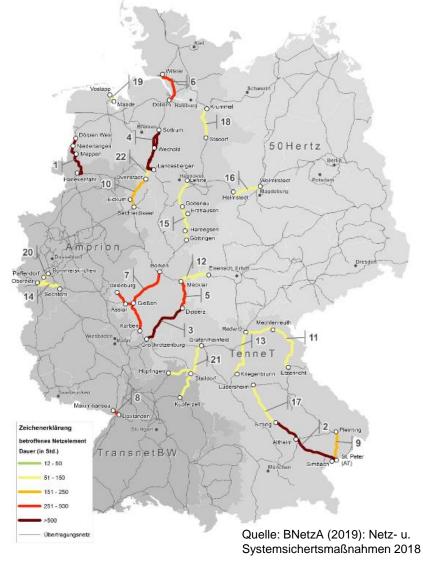
- Stilllegungen von ca. 26 GW bis 2023
- Auf Grund des Kohleausstiegs werden weitere 30 GW bis 2038 reduziert werden

Quelle: Eigene Darstellung nach BNetzA (2019)

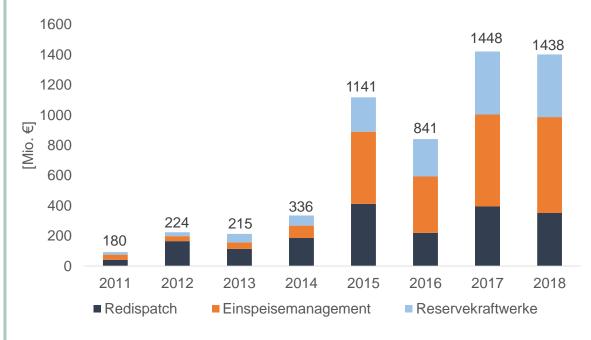




- 1 Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit


Entwicklungstreiber der Versorgungssicherheit 2. Netzengpässe

- Windkraft-Zubau in Norddeutschland führt zu:
 - Zunehmenden Nord-Süd-Engpässen im Übertragungsnetz
 - Steigenden Abregelungs-, Netzreserveeinsatzund Redispatchvolumina und -kosten



- 1 Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

Entwicklungstreiber der Versorgungssicherheit 2. Netzengpässe

- Windkraft-Zubau in Norddeutschland führt zu:
 - Zunehmenden Nord-Süd-Engpässen im Übertragungsnetz
 - Steigenden Abregelungs-, Netzreserveeinsatzund Redispatchvolumina und -kosten

Quelle: Eigene Darstellung nach BNetzA, Monitoringberichte

- 1 Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

Instrumente zum Erhalt der Versorgungssicherheit Ergänzungen zum Netzausbau nötig?

- NEP berücksichtigt Nord-Süd-Engpässe
- 8GW HGÜ-Korridore bis 2025 geplant
- ABER: Netzausbau kann sich verzögern

Sind ergänzende Maßnahmen mit lokaler Steuerung zum Netzausbau nötig?

- Market Splitting in Deutschland
- Kapazitätsmechanismus
- Demand-Side-Management

Quelle: VDE | FNN/Übertragungsnetzbetreiber, NEP 2030 2. Entwurf

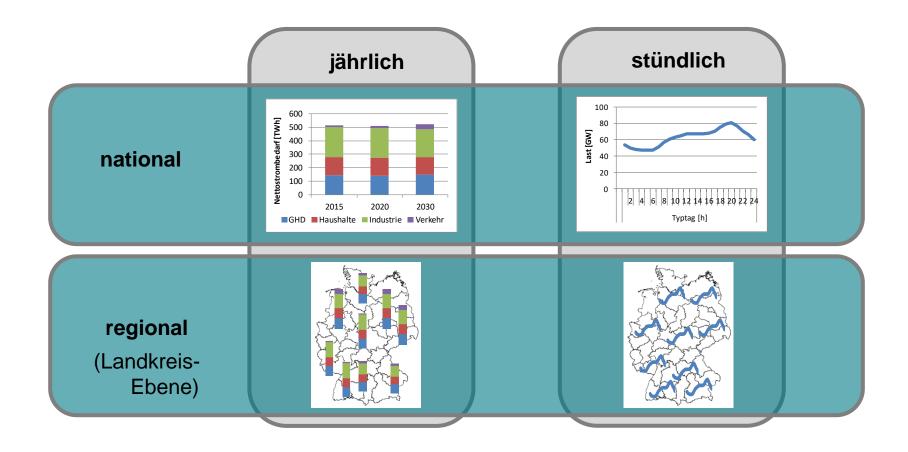
- **Projekt AVerS**
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Projektvorstellung: Forschungsfrage

Analyse der Versorgungssicherheit in Süddeutschland unter Berücksichtigung der europaweiten Kopplung der Strommärkte

- Auswirkungen verschiedener Marktdesignoptionen in Deutschland und den europäischen Nachbarländern auf die Versorgungssicherheit in Deutschland, insbesondere Süddeutschland,
- Auswirkungen der europäischen Marktkopplungsmechanismen auf die Versorgungssicherheit in Deutschland im Allgemeinen und Süddeutschland im Besonderen und
- Beitrag der Nachfrageflexibilisierung zur Versorgungssicherheit.

- 1 Begrüßung und Projektvorstellung
- 2 Überblick der angewandten Methodik
- 3 Entwicklungen im Referenzszenario (REF)
- 4 Aufteilung der deutschen Preiszone (SPLIT)
- 5 Einführung eines Kapazitätsmechanismus in Deutschland (CRM)
- 6 Einfluss von Nachfrageflexibilisierung (DSM)
- 7 Fazit und Diskussionsrunde



Projekt AVerS

Methodik

- FORECAST und eLOAD
- PowerACE
- **ELMOD**
- Modellkopplung
- Szenarioüberblick
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Entwicklung der langfristigen Stromnachfrage Dimensionen der Modellierung: Modellverbund FORECAST und **eLOAD**

- Projekt AVerS
- MethodikFORECAST undeLOAD
 - PowerACE
 - ELMOD
 - Modellkopplung
 - Szenarioüberblick
- 3 Szenario REF
- Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

FORECAST: Projektion der Jahresstromnachfrage

Szenariodefinition Annahmen BIP, Bevölkerung, Energieträgerpreise, Politikmaßnahmen,... **FORECAST Macro FORECAST Pricing** Bruttowertschöpfung, Produktion, Sektorspezifische Endkundenpreise Beschäftigung,... **FORECAST** Jährliche Nachfrage Industrie **GHD** Haushalte Sonstige Subsektor Subsektor Verkehr Submodule Landwirtschaft **Prozess** Energy service Technologie Saving Saving Effizienzklasse Option option Ergebnisse Stromnachfrage national

FORECAST Regional

Jährliche Nachfrage – Regional (Landkreisebene)

Regionaldatenbank

Bevölkerung
BIP
Bruttowertschöpfung
Beschäftigte
Wohnfläche

Sektorale Verteilungsschlüssel

Industrie

Haushalte

GHD

Sonstige

Ergebnisse

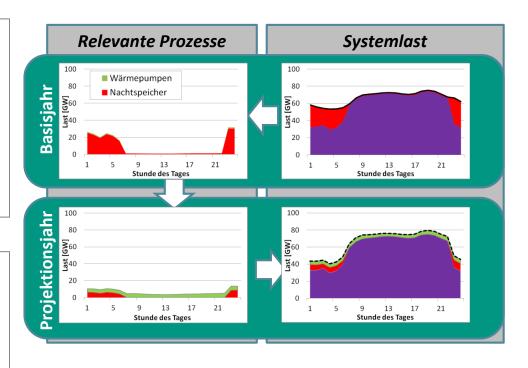
Stromnachfrage regional

SÜDDEUTSCHLAND

Agenda:

- Projekt AVerS
- Methodik FORECAST und
 - **eLOAD** PowerACE
 - **ELMOD**
 - Modellkopplung
 - Szenarioüberblick
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

eLOAD - Lastkurvenprojektion


Methodik

Partielle Dekomposition der historischen **Systemlast**

- Simulation der Zusammensetzung der Systemlast und deren langfristige Entwicklung
- Berücksichtigung von prozessspezifischen Anderungen
- Statisches Verhalten wird angenommen

Ergebnisse

- Stündlich aufgelöste Systemlast im Zieljahr vor Einsatz von Lastmanagement
- Langfristige Entwicklung der Systemlastkurve zur Identifikation struktureller Veränderungen

12

- Projekt AVerS
- Methodik · FORECAST und eLOAD
 - **PowerACE**
 - **ELMOD**
 - Modellkopplung
 - Szenarioüberblick
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Strommarktsimulationsmodell PowerACE

Demand

Supply

Capacity

mechanism

Supply trader

Storage trader

Grid operator

Database

Results

Supply

Eigenschaften Regulator Market • Zeithorizont: 2015-2050 jährlich mit Forward market Capacity area 2...n Auflösung von 8760 h/a All bids Investment planner Market NTC Transfer Day-Ahead Marktsimulation: Kopplung Supply trader Demand profiles coupling Power plants Results capacities der nationalen Märkte Demand trader Storage trader Storage plants Investitionsentscheidungen: iterative Results All bids Grid operator Other traders profiles Bestimmung eines Nash-Gleichgewichts Regulator Market

Day-ahead

market

Ask bid

Ask/Sell bid

Sell bid

Agent

Sell bid Ask/Sell bid

area

Demand profiles

Demand trader

Other traders

Information flow

Eingangsdaten

- · Kraftwerksflotten des Basisjahrs
- Brennstoffpreise und CO₂ Preise
- · Stündliche Stromnachfrage und Einspeisung Erneuerbarer
- Handelskapazitäten (NTCs)

Modellergebnisse

- Stündliche Day-Ahead Marktpreise
- · Stündlicher Kraftwerks- und Speichereinsatz
- · Investitionsentscheidungen in Kraftwerke und Speicher

Legend:

Investments

Forward

market

Investment planner

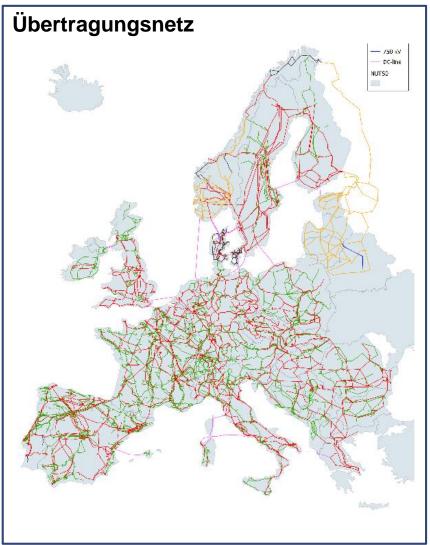
Power plants

Storage plants

Renewable

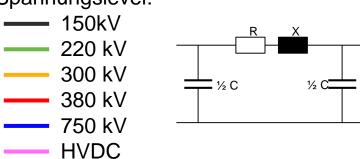
profiles

Market


Results

SÜDDEUTSCHLAND

Agenda:


- Projekt AVerS
- Methodik
 - · FORECAST und eLOAD
 - **PowerACE**
 - **ELMOD**
 - Modellkopplung
 - Szenarioüberblick
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

ELMOD Analysen basieren auf dem europäischen Übertragungsnetz

Eigenschaften Übertragungsleitungen

Spannungslevel:

- Thermische Kapazität
- Anzahl von Stromkreisen
- Elektrische Merkmale: Widerstand, Reaktanz, shunt conductance

Datenbasis

- 5.210 AC Übertragungsleitungen
- 25 HGÜ-Leitungen
- 228.000 km Übertragungsleitungslänge
- 284.000 km Länge der Stromkreise

Projekt AVerS

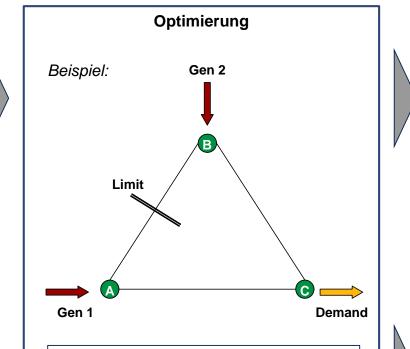
Methodik

- · FORECAST und eLOAD
- PowerACE
- **ELMOD**
- Modellkopplung
- Szenarioüberblick
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

ELMOD basiert auf der Nodalpreis-Logik Kostenminimaler Redispatch kann implementiert werden

DC Modell-Schema

Input


Knoten

- Erzeugungskapazitäten
- EE-Einspeisung
- Erzeugungskosten
- Nachfrage
- Kraftwerks-Dispatch

Leitungen

- Stromnetz-Graph (Inzidenz-Matrix)
- **Thermische** Kapazitäten
- Impedanz

ELMOD

MIN Erzeug.- / Engpasskosten, u.d. NB

Nachfrage + Injection = Erzeugung Erzeugung ≤ install. Kapazität | Lastfluss | ≤ therm. Kapazität

Output

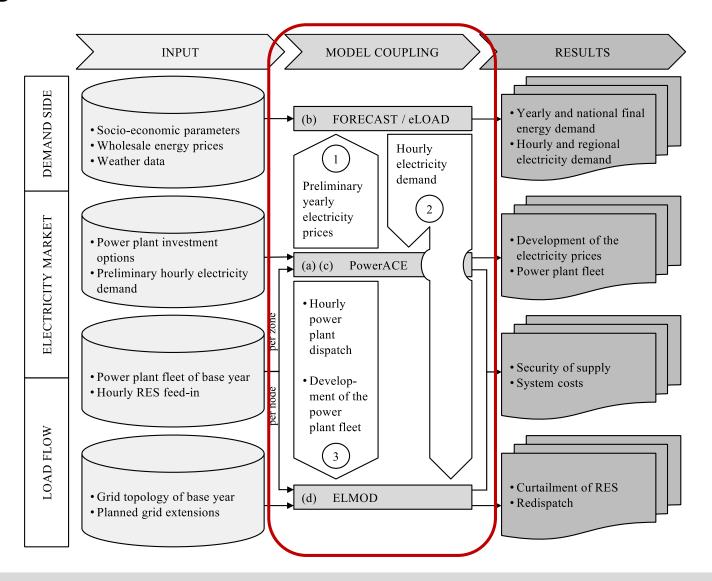
Knoten

- Kraftwerkseinsatz
- Kraftwerks-Redispatch
- Abregelung EE (EinsMan)
- **Nodalpreise**

Leitungen

- Lastflüsse
- Engpassleitungen, -häufigkeiten,

 - -volumen etc.



Kopplungsschema der Einzelmodelle

- Agenda:
- 1 Projekt AVerS
- 2 Methodik
 - FORECAST und eLOAD
 - PowerACE
 - ELMOD
 - Modellkopplung
 - Szenarioüberblick
- 3 Szenario REF
- Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

Projekt AVerS

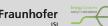
Methodik

- · FORECAST und eLOAD
- PowerACE
- **ELMOD**
- Modellkopplung
- Szenarioüberblick
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

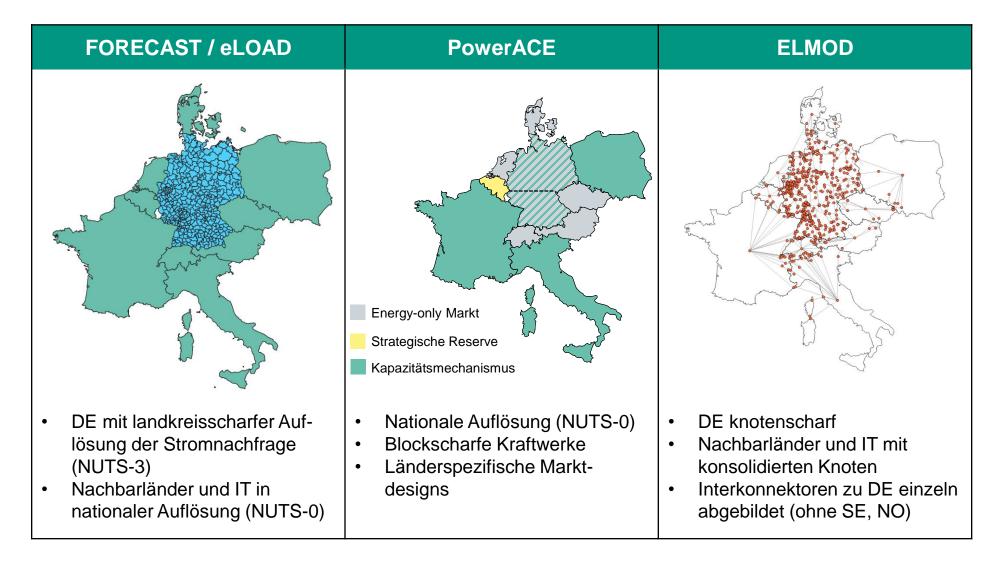
Vergleich der betrachteten Szenarien

Szenario	Gebotszonen	Marktdesign	Nachfrageflexibilität	Zuordnung der Neubauten
REF	National	EOM in Deutschland, Status quo in den Nachbarländern	Unflexible Nachfrage in allen modellierten Ländern	Innerhalb der Zonen nach Stilllegungsorten
SPLIT	National, Aufteilung Deutschlands in zwei Zonen	EOM in Deutschland, Status quo in den Nachbarländern	Unflexible Nachfrage in allen modellierten Ländern	Innerhalb der Zonen nach Stilllegungsorten
CRM	National	Kapazitätsmechanismus in Deutschland, Status quo in den Nachbarländern	Unflexible Nachfrage in allen modellierten Ländern	Innerhalb der Zonen nach Stilllegungsorten, zusätzlich vereinfachte Berücksichtigung von Netzengpässen
DSM	National	EOM in Deutschland, Status quo in den Nachbarländern	Steigende Anteile flexibler Nachfrage in allen modellierten Ländern	Innerhalb der Zonen nach Stilllegungsorten

- → Das Szenario *REF* dient als Worst-Case Betrachtung aus Sicht der Versorgungssicherheit
- → In den Szenarien SPLIT, CRM und DSM werden verschiedene Instrumente zur Erhöhung der Versorgungssicherheit isoliert hinsichtlich ihrer Effektivität gegenüber *REF* analysiert



- Begrüßung und Projektvorstellung
- Überblick der angewandten Methodik
- **Entwicklungen im Referenzszenario (REF)**
- Aufteilung der deutschen Preiszone (SPLIT)
- Einführung eines Kapazitätsmechanismus in Deutschland (CRM)
- Einfluss von Nachfrageflexibilisierung (DSM)
- Fazit und Diskussionsrunde



Geografische Auflösung der Modelle

Agenda:

- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

AVerS Abschlussworkshop, Stuttgart

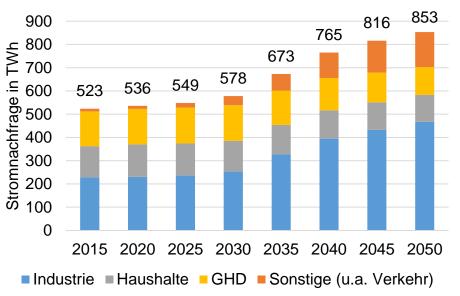
- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

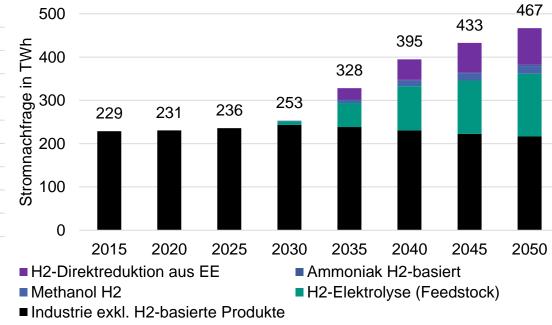
Szenariorahmenwerk

Rahmenwerk	Indikator We	niger ambitioniert	Mehr ambitioniert
Bevölkerung	Bevölkerungswachstum bis 2050 EU Reference Scenario 2016 ¹⁾) Ho	Ni
Wirtschaftswachstum	BIP Wachstum bis 2050 EU Reference Scenario 2016 ¹⁾	Но	Ni
Brennstoffpreise	Großhandelspreise in 2050 EU Reference Scenario 2016 ¹⁾	Ni	Но
CO ₂ -Preise	EUA-Preise in 2050 EU Reference Scenario 2016 ¹⁾	Ni	Ho
Politik-Ziele			~ -80%
THG Emissions- Reduktion	Gesamte Emissionsreduktion in 2050 im Vergleich zu 1990 ²⁾	Ni	- 80%
Erneuerbaren Anteil	Erneuerbaren Anteil an Strom- erzeugung in 2050 ^{1) & eigene Annahm}	en Ni	Ho
Energieeffizienz	Anteil des ausgeschöpften technischen Potentials in 2050	Ni	Ho

1) EU Reference Scenario 2016 (Capros et al. 2016) 2) EC Roadmap for moving to a competitive low carbon economy in 2050 (COM 2011/0112), WEO 2016: OECD/IEA 2016

Entwicklung der jährlichen Stromnachfrage


- sektorale Entwicklung 2015 bis 2050 in Deuschland


Agenda:

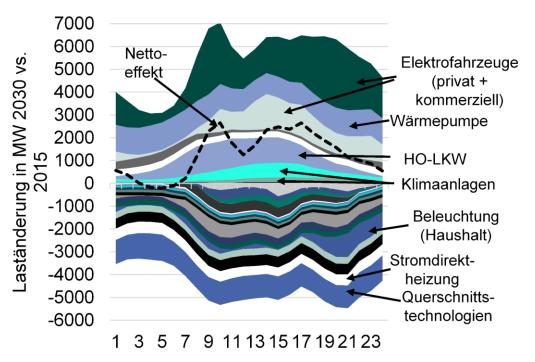
- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - **Nachfrage**
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Gesamtstromnachfrage Deutschland

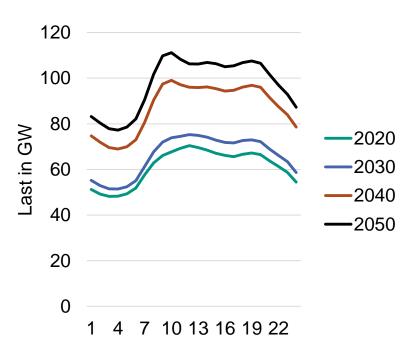
Stromnachfrage Industrie Deutschland

- Rückgang der Nachfrage in den "klassischen" Sektoren bedingt durch Effizienzgewinne
- Diffusion neuer Verbraucher (Wärmepumpen, Elektrofahrzeuge) führt insgesamt zu einer starken Erhöhung der Jahresnachfrage
- Ab 2030 Brennstoffwechsel in der Industrie (hin zu strom- oder wasserstoffbasierten Prozessen) & neue Produktionsverfahren: Starker Anstieg der Stromnachfrage im Industriesektor

Entwicklung der stündlichen Stromnachfrage


- Systemlastentwicklung in Deutschland

SUDDEUTSCHLAND


Agenda:

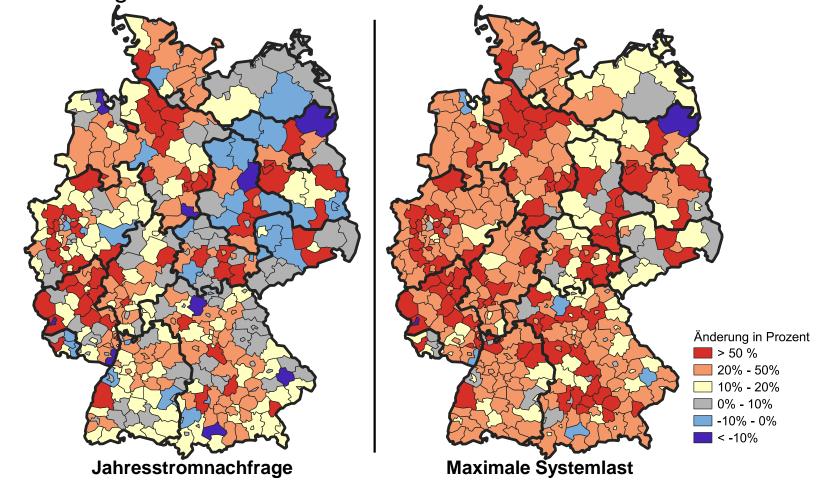
- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - **Nachfrage**
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Vergleich ausgewählter Prozesse und Anwendungen im Tagesverlauf - 2030 vs. 2015

Entwicklung der mittleren Systemlast in **Deutschland im Tagesverlauf**

- Strukturelle Veränderungen geprägt durch HO-LKW, private Elektroautos und Effizienzgewinne in der Beleuchtung
- Zunehmend Absinken der Systemlast in den Nachtstunden.
- Nachfrageerhöhung bedingt durch Sektorkopplungstechnologien und neue Produktionsverfahren in der Industrie (H2- und strombasiert) (Wasserstofferzeugung): Erhöhung der Spitzenlast auf > 130 GW

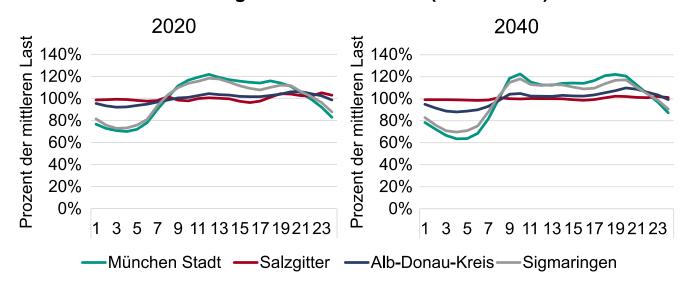
22


Entwicklung der regionalen Stromnachfrage

- Veränderung in den Landkreisen: 2015 vs. 2050

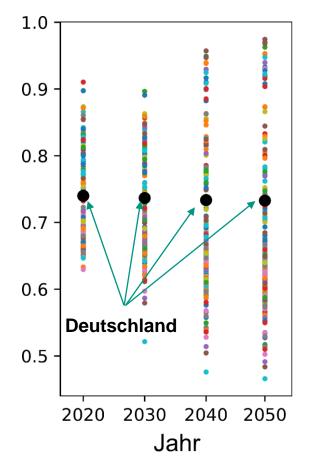
- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - **Nachfrage**
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

- Regionale, strukturelle Unterschiede bestimmen Entwicklung der Stromnachfrage
- Ländliche Regionen sind durch hohen Anteil Elektrofahrzeuge geprägt, Städte durch steigenden GHD-Anteil
- Anstieg der Systemlast stärker als Anstieg der Jahresstromnachfrage



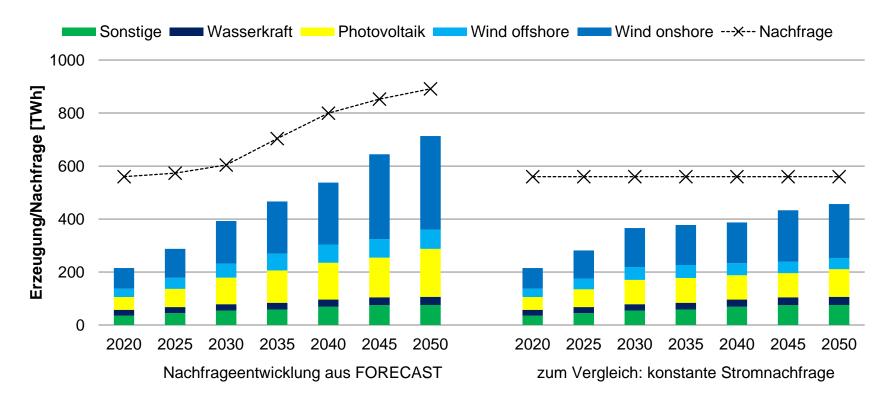
- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - **Nachfrage**
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Regionale Betrachtung Gesamtlast


Mittlerer Lastverlauf ausgewählter Landkreise (normalisiert)

- Starke Unterschiede hinsichtlich der Volatilität der Last einzelner Regionen: In regionalisierter Betrachtung dominieren einzelne Prozesse und Anwendungen
- Kompensation des Nachfragerückgangs (Effizienzgewinne) durch einzelne Prozesse und Anwendungen
- Implikationen für Flexibilitätspotenzial, Flexibilitätsbedarf und Netzengpässe

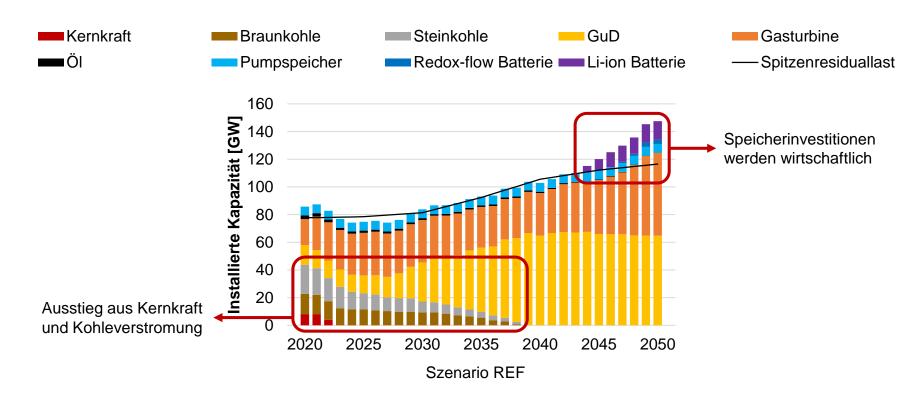
Kapazitätsfaktoren aller Landkreise: Mittlere / Maximale Last



- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - **Strommarkt**
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Zukünftige Stromerzeugung aus Erneuerbaren **Energien in Deutschland**

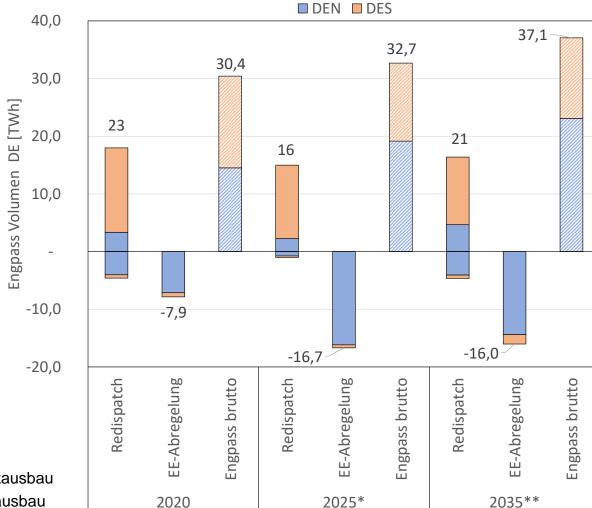
- → Die deutschen Ziele sehen einen Anteil der Erneuerbaren Energien an der gesamten Stromerzeugung von 65% bis 2030 und 80% bis 2050 vor
- → Die stark steigende Stromnachfrage erfordert daher enorme Zubauraten für Photovoltaik und Windkraft in Deutschland



- Projekt AVerS
- Methodik
 - Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

Entwicklung der konventionellen Kraftwerks- und Speicherkapazitäten in Deutschland

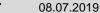
- → Umfangreiche Kraftwerksstilllegungen und eine stark steigende Stromnachfrage führt zu enormem Zubau von Gaskraftwerken in Deutschland
- → Investitionen in Speicher werden bei ausschließlicher Nutzung am Day-Ahead Markt erst bei hohen Anteilen an Erneuerbaren Energien und starker Kostendegression getätigt



- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

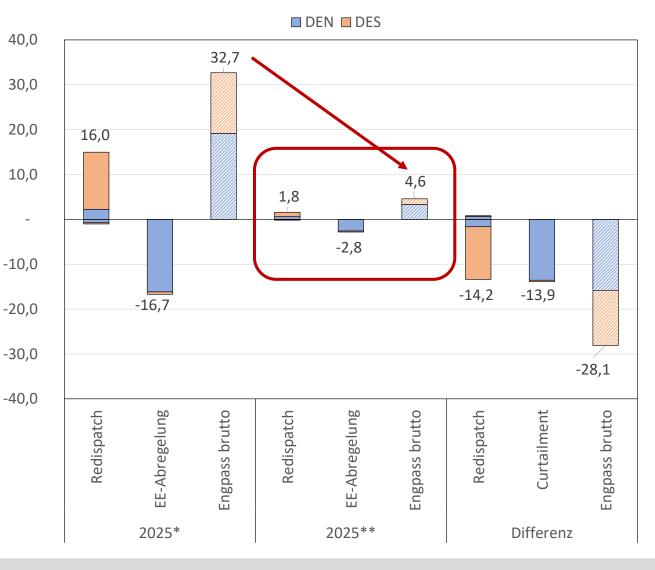
REF – Entwicklung Engpassmanagement 2020 - 2035

- Brutto Engpass-Volumen nimmt bis 2035 leicht zu -Annahme: 5 Jahre Netzausbau Verzögerung
- Die Abregelung von Windkraft ist Treiber der Entwicklung – leichter Rückgang in 2035 auf Grund Netzausbau
- Bedeutung der vordefinierten Netzreserve-Kraftwerke nimmt ab



^{*} ohne HGÜ-Netzausbau

^{**} mit HGÜ-Netzausbau

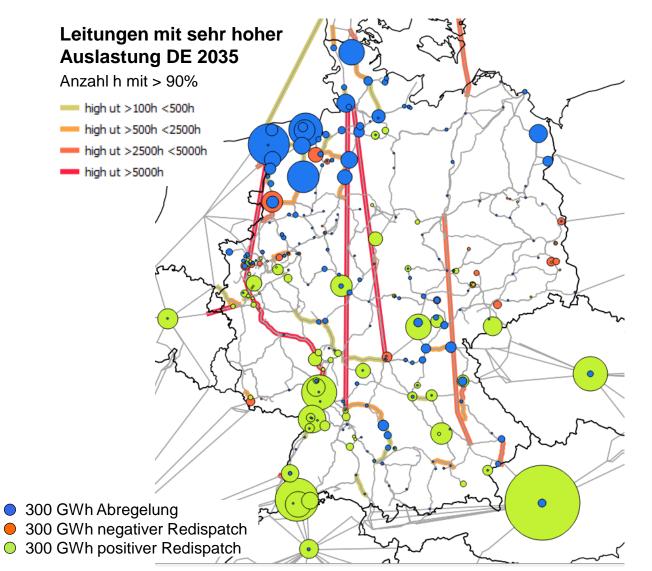


- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

REF 2025: verspäteter vs. rechtzeitiger Netzausbau

Engpass Volumen DE [TWh]

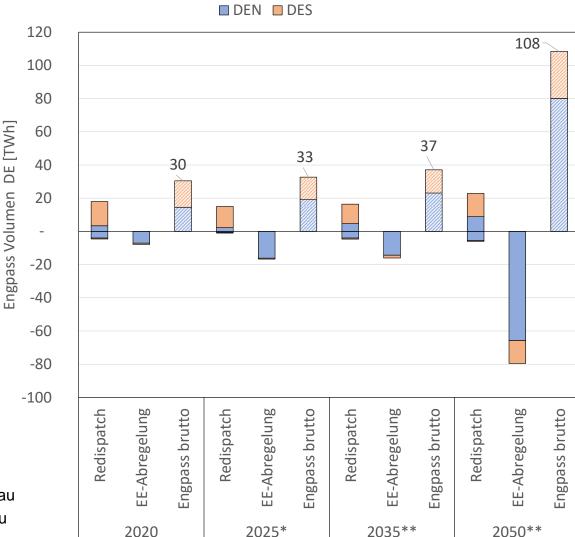
- Generelle Szenarien-Annahme: 5 Jahre Verzögerung bei HGÜ-Leitungen in DE
- Bei rechtzeitigem Netzausbau (HGÜ-Leitungen) werden Engpässe in 2025 jedoch massiv reduziert
- Redispatch und Reserve-Einsatz: - 89% $(15.9 \text{ TWh} \rightarrow 1.8 \text{ TWh})$
- EE-Abregelung kann um 14 TWh reduziert werden



- Projekt AVerS
- 2 Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- 4 Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

REF 2035: Nord-Süd Engpässe bestehen weiter Netzausbau entschärft diese

- Der Netzausbau führt zu einer Reduktion des EE-Abregelung-Volumen in 2035 ggü. 2025
- Dennoch sind Nord-Süd-Engpässe durch den weiteren Windkraftausbau weiterhin dominierend
- Durch Annahme der 5 Jahres-Verzögerung fehlen die HGÜ-Projekte: DC20, DC21/23/25 lt. NEP2030 (2019)



- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- **Fazit**

REF – Entwicklung Engpassmanagement 2020 - 2050

- Massive Zunahme des Engpass Volumens in 2050
- Hohe negative Residuallasten führen zu einer extrem steigenden **EE-Abregelung** (Großteil davon erfolgt bereits im Markt)
- Positiver Redispatch steigt realtiv langsam im Vergleich zum Abregelungsvolumen

^{*} ohne HGÜ-Netzausbau

^{**} mit HGÜ-Netzausbau

VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

Agenda:

- Projekt AVerS
- Methodik
- Szenario REF
 - Annahmen
 - Nachfrage
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
- Fazit

Zwischenfazit zum Szenario REF

Nachfrage	Strommarkt	Übertragungsnetz
 Konsequente Dekarbonisierung der Industrie ohne CCS benötigt innovative Verfahrensweisen, was zu einem starken Anstieg der Stromnachfrage in der Industrie führen kann Residential/GHD: Sehr hohes Niveau im Bereich der Gebäudesanierung, Ausweitung der Gebäudestandards und der Ökodesigndirective 	 Einhaltung der Klimaziele erfordert unter den gegebenen Voraussetzungen enormen Ausbau der Erneuerbaren Energien Bei starrer Nachfrage trotz hoher Anteile Erneuerbarer besteht auch zukünftig ein sehr hoher Kraftwerksbedarf Großspeicher werden aber bei reinem Einsatz am Day-Ahead Markt erst spät wirtschaftlich 	 Durch steigende Nachfrage und Einspeisung aus Erneuerbaren nehmen die Abregelungsvolumina trotz der zunehmenden Kopplung der Strommärkte zukünftig deutlich zu Rechtzeitiger Netzausbau ist kurzfristig essentiell, muss langfristig jedoch um weitere Flexibilitäten und Netzkapazitäten ergänzt werden

- Begrüßung und Projektvorstellung
- Überblick der angewandten Methodik
- Entwicklungen im Referenzszenario (REF)
- Aufteilung der deutschen Preiszone (SPLIT)
- Einführung eines Kapazitätsmechanismus in Deutschland (CRM)
- Einfluss von Nachfrageflexibilisierung (DSM)
- Fazit und Diskussionsrunde

- Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - · Verteilungseffekte
 - Zwischenfazit
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

SPLIT – Methode zur Gebotszonenbildung Market Splitting

Methode: Spectral Clustering mit Fuzzy-C-Means

1. Generierung von Nodalpreisen

Konfiguration Zieljahr(e)

Berechnung von stünd-

lichen Nodalpreisen in

ELMOD für Zieljahr(e)

Definition Szenarien

2. Clustern der Nodalpreise

Berechnung* Laplacian-Matrix U auf Basis von Ähnlichkeit u. Adjazenz

Berechnung der Eigenvektoren von U

Clustern der k kleinsten Eigenvektoren mit Fuzzy-C-Means Algor.

Analysen zur Stabilität und Robustheit

3. Bewertung Marktzuschnitte

Berechnung Kraftwerkseinsatz und Investitionen (bis 2050)

Berechnung Engpassmanagement-Maßnahmen für "Stützjahre" in ELMOD

Berechnung von Vergleichsindikatoren, u.a. für Engpass-Manag., Systemkosten, etc.

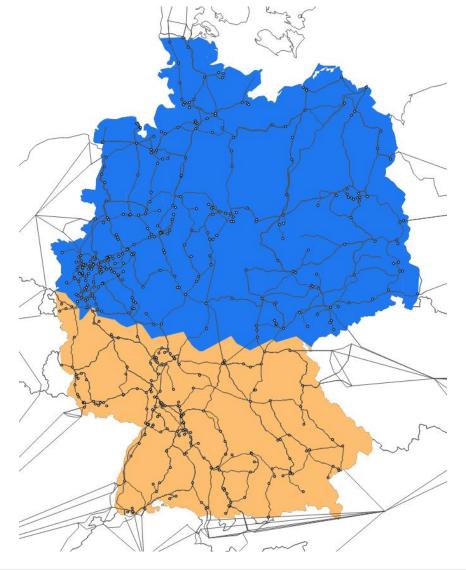
Excel, sonstiges

Gams

R

PowerACE

Quelle: eigene Darstellung; *nach Luxburg (2007) & Metzdorf (2016)

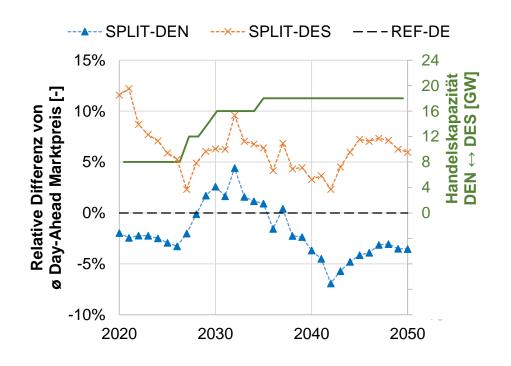

33

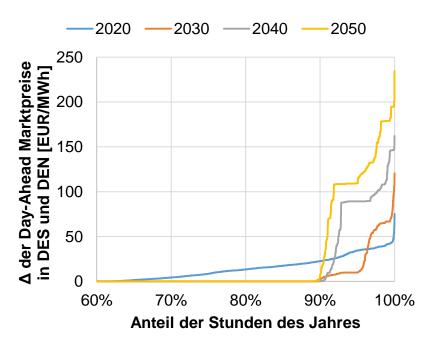
- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

SPLIT – Methode zur Gebotszonenbildung Market Splitting

SÜDDEUTSCHLAND

- Marktzonenbildung durchgeführt mit Zieljahr 2020
- Engpassleitungen (hohe Kapazitätsauslastung) sind vorrangig in Nord-Süd-Richtung und werden von neuer Preizonengrenze "gut getroffen"
- Engpässe in Ost-West Richtung treten relativ zu Nord-Süd-Engpässen deutlich seltener in den Modellrechnungen auf

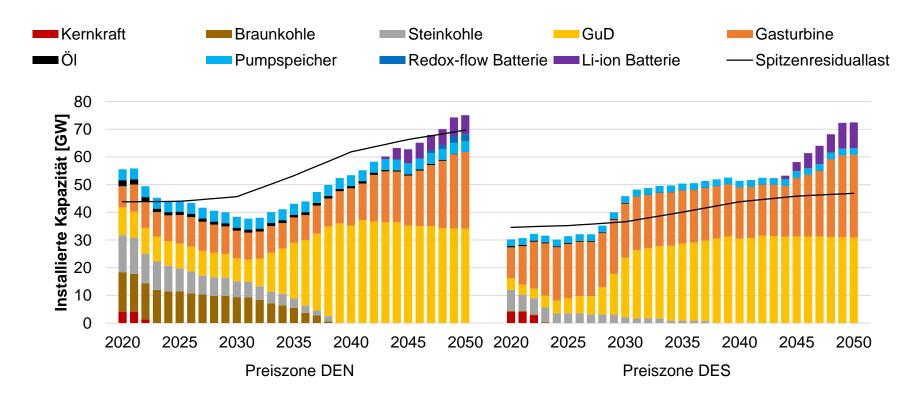




- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

Entwicklung der Day-Ahead Marktpreise im SPLIT-Szenario

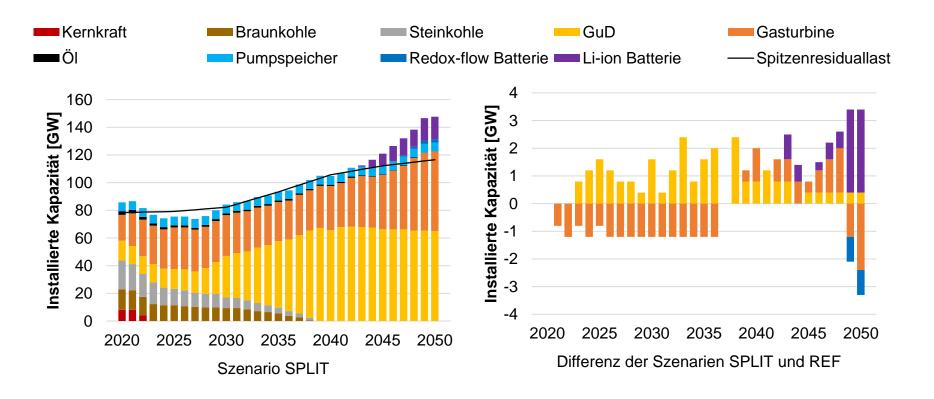
- → Unter ambitioniertem Ausbau der Erneuerbaren und den geplanten Übertragungskapazitäten bleiben auch langfristig Preisdifferenzen zwischen den Preiszonen DEN und DES bestehen
- Getrieben durch steigende Kosten für konventionelle Stromerzeugung nimmt die Anzahl der Stunden mit Preisdifferenzen mittelfristig gegenüber 2020 ab, deren Höhe steigt jedoch



- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

Entwicklung der konventionellen Kraftwerks- und Speicherkapazitäten im SPLIT-Szenario

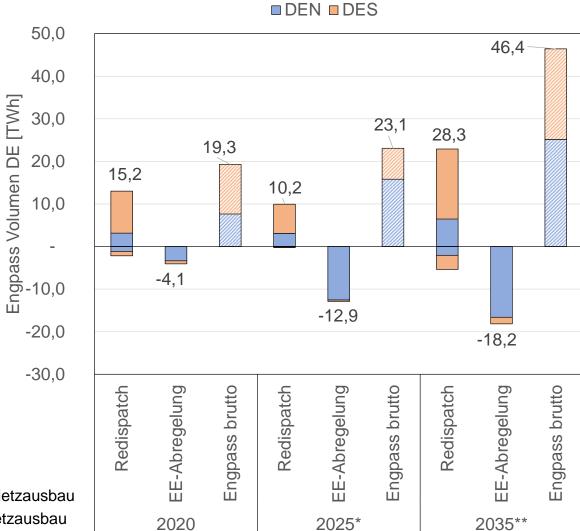
- → Durch die Preisdifferenzen zwischen den aufgeteilten Preiszonen DEN und DES werden die Netzengpässe von DEN nach DES im Markt sichtbar
- → Investitionen in konventionelle Kraftwerke und Speicher sind daher in der Preiszone DES häufig wirtschaftlicher als in DEN



- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

Entwicklung der konventionellen Kraftwerks- und Speicherkapazitäten im SPLIT-Szenario

- → Eine Aufteilung der deutschen Preiszone beeinflusst die installierte Kapazität der Neubauten nur in relativ geringem Ausmaß
- → Aber: Der Technologiemix ändert sich und es werden mehr Mittellastkraftwerke und Speicher, dafür weniger Spitzenlastkraftwerke gebaut



- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

SPLIT – Entwicklung Engpassmanagement 2020 - 2035

- SPLIT führt zu deutlich geringeren Engpass-Volumen in 2020 (-37%) & 2025 (-29%) ggü. **REF**
- In 2035 hingegen erfolgt Zunahme des Engpass-Volumens um 25%

^{*} ohne HGÜ-Netzausbau

^{**} mit HGÜ-Netzausbau

- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

SPLIT – Entwicklung Engpassmanagement 2020 - 2035

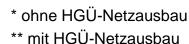
[TWh]

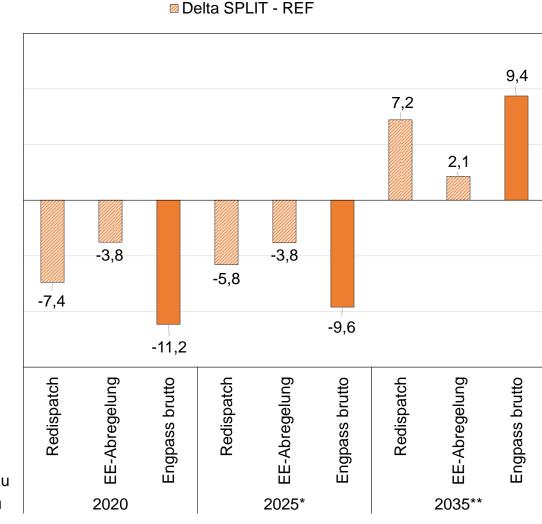
Engpass Volumen DE

Ω∰.

REF

15

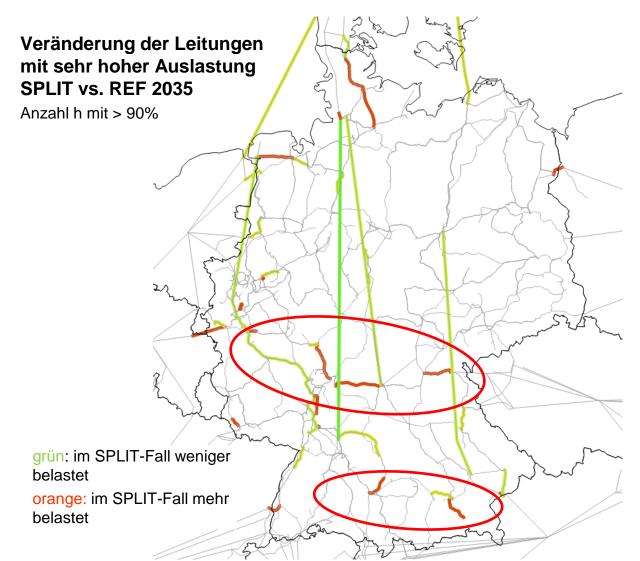

10


-5

-10

-15

- SPLIT führt zu deutlich geringeren Engpass-Volumen in 2020 (-37%) & 2025 (-29%) ggü. REF
- In 2035 hingegen erfolgt Zunahme des Engpass-Volumens um +25%
- Wesentliche Ursache ist umfangreicher struktureller Wandel im Netz und KW-Park → neue intrazonale **Engpässe in DES**
- Zonenzuschnitt wird ineffizient

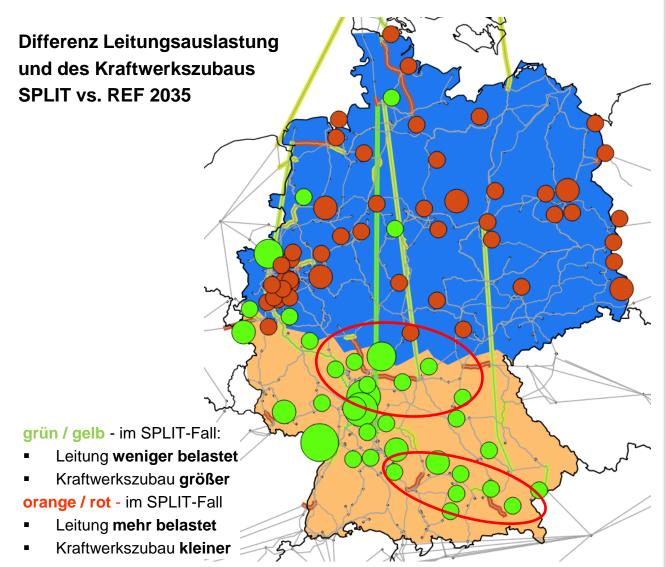


- Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

SPLIT – Entwicklung Engpassmanagement 2035 Neue Engpässe ersichtlich

AVERS ANALYSE VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

- Nord-Süd-Trassen (HGÜ-Leitungen) werden im SPLIT-Szenario vs. REF deutlich entlastet
- Es entstehen jedoch neue intrazonale Engpässe insbesondere in der süddeutschen Zone (DES)

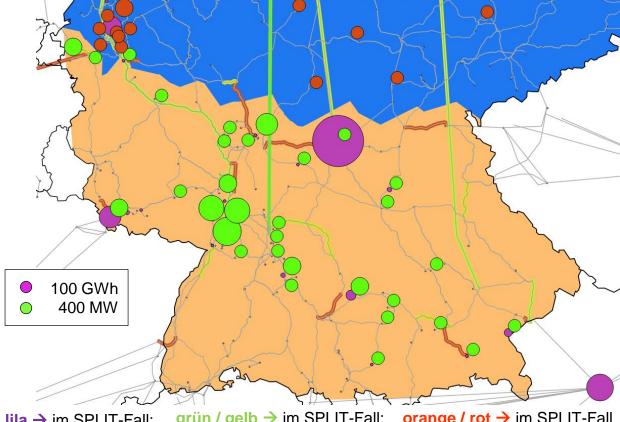


- Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

SPLIT – Entwicklung Engpassmanagement 2035 Allokation der Kraftwerke in DES löst neue Engpässe aus

AVERS ANALYSE VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

- Grund dafür ist vorwiegend der Kraftwerkszubau, welcher sich im Süden stark konzentriert
- Auf Grund der gewählten Methode zur Standortauswahl, wird an einzelnen Knoten eine deutlich größere "Zubau-Kapazität" installiert, als zuvor zurück gebaut wurde



- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

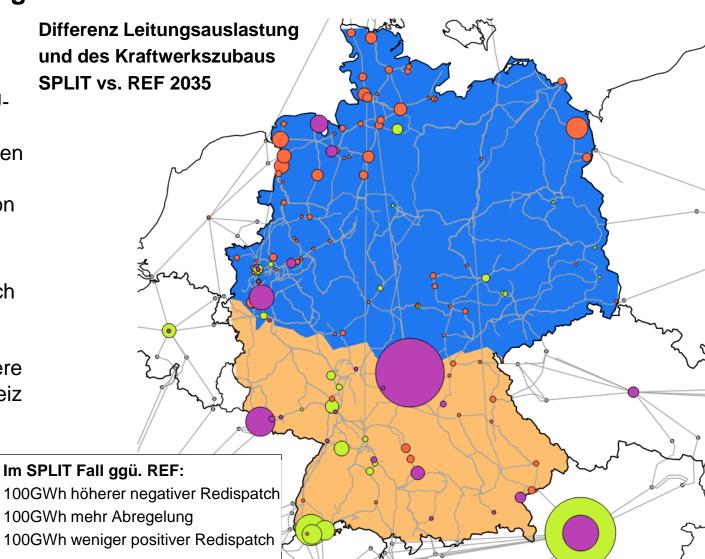
SPLIT – Entwicklung Engpassmanagement 2020 - 2035

Daher kann Marktergebnis insbesondere für DES schlechter umgesetzt werden → höherer negativer Redispatch als im REF-Fall ist die Folge

Differenz Leitungsauslastung und des Kraftwerkszubaus SPLIT vs. REF 2035

grün / gelb → im SPLIT-Fall: orange / rot → im SPLIT-Fall lila → im SPLIT-Fall:

- höherer negativer Redispatch
- Leitung weniger belastet •
- Leitung mehr belastet
- Kraftwerkszubau **größer**
- Kraftwerkszubau kleiner


- Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

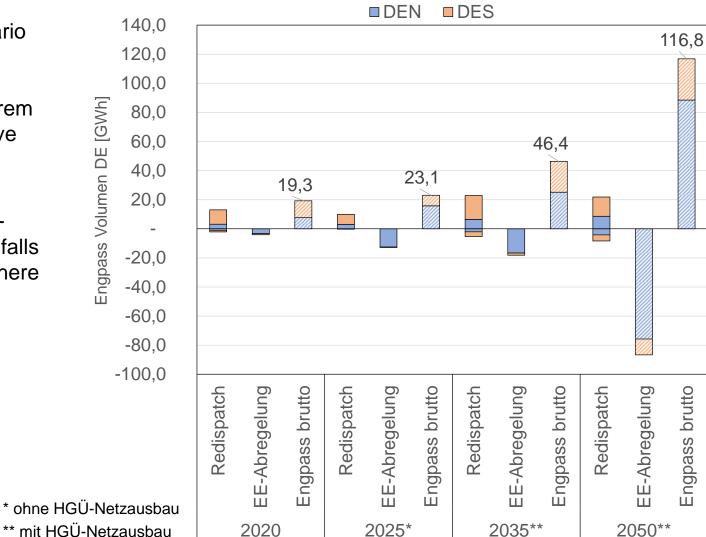
SPLIT – Engpassmanagement 2035: SPLIT vs. REF Gebotszonenaufteilung wird ineffizienter

 Das hohe Erzeugungs-Niveau in der DES-Zone führt dazu, dass die HGÜ-Leitungen schlechter ausgelastet werden können → Folge sind höhere Abregelungsmengen von

Windkraft

Es wird jedoch ein deutlich geringeres positives
Redispatchvolumen
benötigt, was insbesondere
Österreich und die Schweiz entlastet

SÜDDEUTSCHLAND

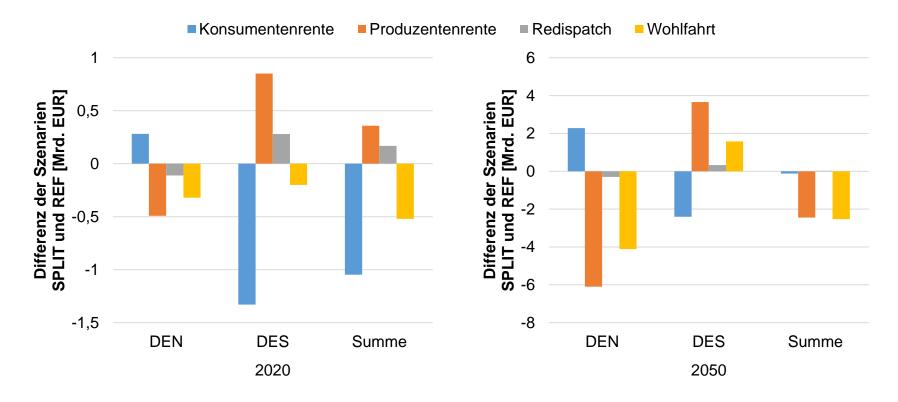


- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

SPLIT – Entwicklung Engpassmanagement 2020 - 2050

- Auch im SPLIT Szenario kommt es in 2050 zu umfangreichen EE-Abregelungen auf extrem umfangreicher negative Residuallasten
- In 2050 fällt im SPLIT-Szenario zudem ebenfalls eine um ca. 8TWh höhere Engpassarbeit an

^{*} ohne HGÜ-Netzausbau



SÜDDEUTSCHLAND

Agenda:

- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

Verteilungseffekte im SPLIT-Szenario

- → Im Jahr 2020 führt der starke Rückgang der Konsumentenrenten trotz Anstieg der Produzentenrenten und Rückgang der Redispatchkosten zu negativen Wohlfahrtseffekten
- → Im Jahr 2050 treten ebenfalls Wohlfahrtsverluste auf, die primär durch den starken Rückgang der Produzentenrenten in der Gebotszone DEN getrieben sind

AVerS Abschlussworkshop, Stuttgart

VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

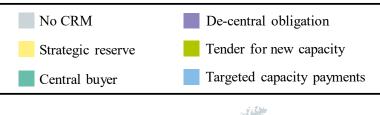
Zwischenfazit zum Szenario SPLIT

Agenda:

- Projekt AVerS
- Methodik
- Szenario REF
- **Szenario SPLIT**
 - Zonenaufteilung
 - Strommarkt
 - Übertragungsnetz
 - Verteilungseffekte
 - Zwischenfazit
- Szenario CRM
- Szenario DSM
- **Fazit**

Mittelfristig	Langfristig	Konsequenz
 Market Splitting führt zu einer hohen Reduktion von notwendiger Engpassarbeit Somit Beitrag zur Systemstabilität und Versorgungssicherheit, insbesondere bei weiteren Verzögerungen im Netzausbau (HGÜ-Leitungen) 	 Fundamentale Veränderungen, sowohl in der Netzstruktur, als auch beim Kraftwerkspark führen zu neuen intrazonalen Engpässen in der süddeutschen Zone Market Splitting wird hierdurch ineffizienter als der Referenzfall 	 Erneute Anpassung des Zonenzuschnitts erforderlich Aber: Regionaler Investitionsanreiz würde durch unsichere Rahmenbedingungen reduziert Alternativ verstärkter Netzausbau innerhalb Süddeutschlands

- 1 Begrüßung und Projektvorstellung
- 2 Überblick der angewandten Methodik
- 3 Entwicklungen im Referenzszenario (REF)
- 4 Aufteilung der deutschen Preiszone (SPLIT)
- 5 Einführung eines Kapazitätsmechanismus in Deutschland (CRM)
- 6 Einfluss von Nachfrageflexibilisierung (DSM)
- 7 Fazit und Diskussionsrunde



AVERS ANALYSE VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

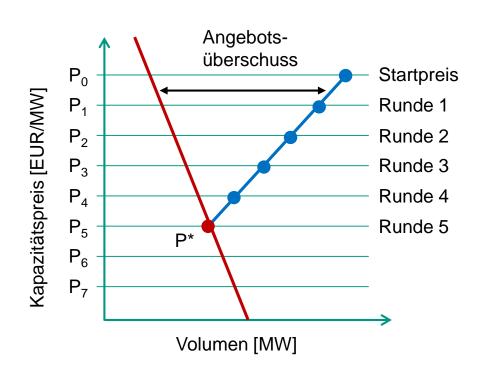
Agenda:

- 1 Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- 6 Szenario DSM
- 7 Fazit

Entwicklung der europäischen Marktdesigns

Hintergrund:

- Traditionelles Marktdesign in Europa ist der Energy-only Markt (EOM)
- In den letzten Jahren vermehrt Einführung von Kapazitätsmechanismen (CRM) zu beobachten
- Wesentlicher Treiber: Zweifel an der Fähigkeit des EOM, ausreichende Investitionsanreize in gesicherte Erzeugungs- und Speicherkapazität zu setzen
- Kapazitätsmechanismen entlohnen neben der verkauften Strommenge auch die Bereitstellung gesicherter Kapazität



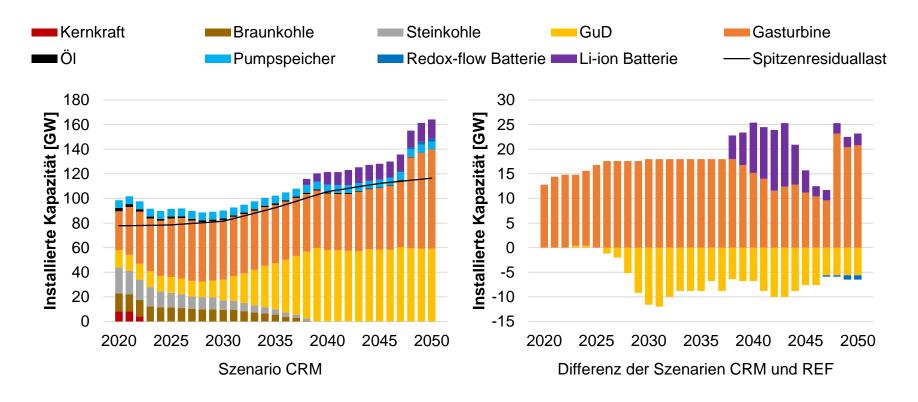
Funktionsweise des zentralen Kapazitätsmechanismus in PowerACE

Agenda:

- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario DSM
- **Fazit**

Ablauf:

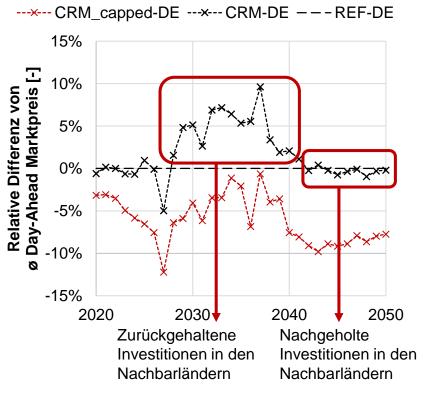
- Regulator definiert Reservemarge (Verhältnis von gesicherter Leistung zu Spitzenresiduallast)
- Reservemange bestimmt die gesicherte Leistung, die jährlich über eine holländische Auktion (descending clock) kontrahiert wird
- Versorgungsunternehmen erstellen Gebote bestehend aus gesicherter Erzeugungs-/ Speicherkapazität und Kapazitätspreis
 - Bestehende Kapazitäten zum Preis von 0 EUR/MW
 - Neue Kapazitäten mit Differenzkosten (Betrag der zur Profitabilität fehlt)
- Markträumung nach Einheitspreisverfahren
- Durch Kombination mit Call-Optionen behält der Regulator die "Peak Energy Rent" ein



- Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- 6 Szenario DSM
- 7 Fazit

Entwicklung der konventionellen Kraftwerks- und Speicherkapazitäten im CRM-Szenario

- → Die Einführung eines Kapazitätsmechanismus in Deutschland führt zu substantiell höheren Investitionen in neue konventionelle Kraftwerks- und Speicherkapazitäten
- → Der Technologiemix ändert sich deutlich und es werden mehr Spitzenlastkraftwerke und Speicher, dafür weniger Mittellastkraftwerke gebaut

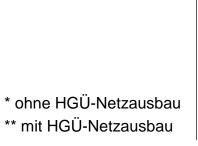


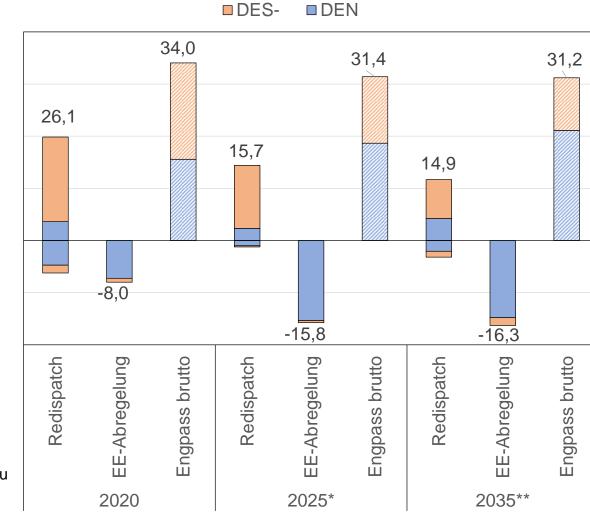


- Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- 6 Szenario DSM
- 7 Fazit

Entwicklung der Day-Ahead Marktpreise im CRM-Szenario

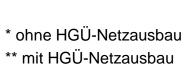
- → Der stark veränderte Technologiemix in Deutschland und verzögerte Neuinvestitionen in den Nachbarländern führen zu höheren Day-Ahead Durchschnittspreisen im Szenario CRM
- → Aber: Der Regulator würde in diesem Fall die "Peak Energy Rent" einbehalten und die entsprechend angepassten Day-Ahead Durchschnittspreise liegen unterhalb des Szenarios REF

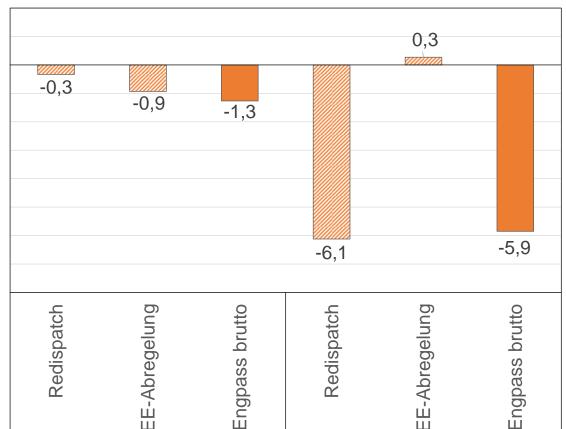



- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario DSM
- **Fazit**

CRM – Entwicklung Engpassmanagement 2020 - 2035

- **Engpass Volumen** bleibt relativ stabil bis 2035, sinkt sogar leicht
- Geringstes Engpass Volumen in 2035 im Vgl. zu REF und SPLIT




- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario DSM
- **Fazit**

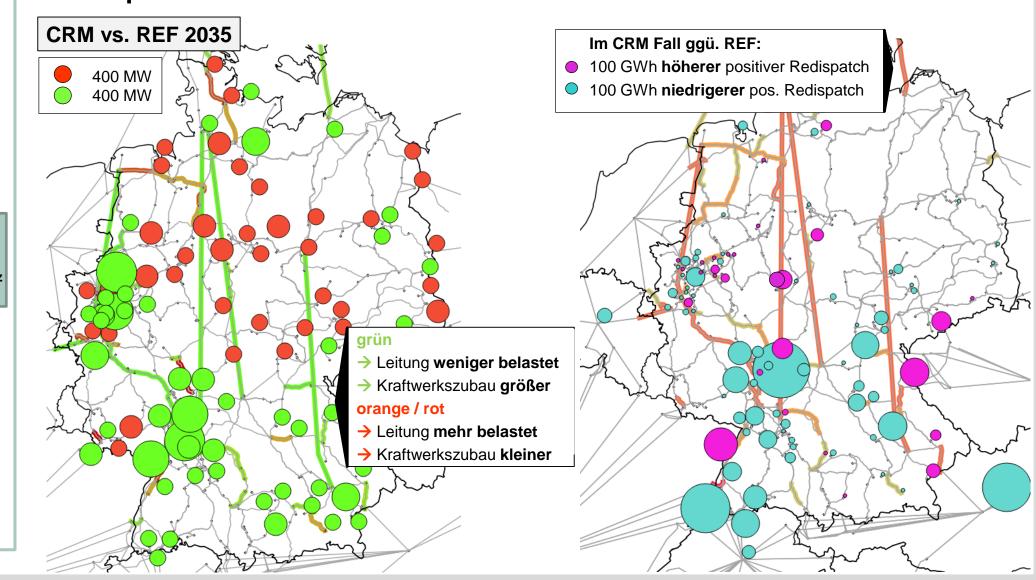
CRM – Entwicklung Engpassmanagement 2020 - 2035

- CRM-Fall weist geringere **Engpass Volumen auf**
- Reduktion in 2025 (-3,9%) und 2035 (-15,8%)
- Geringstes Engpass Volumen in 2035 im Vgl. zu REF und SPLIT

Delta CRM - REF

2025*

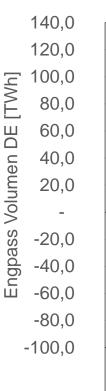
2035**

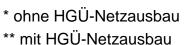


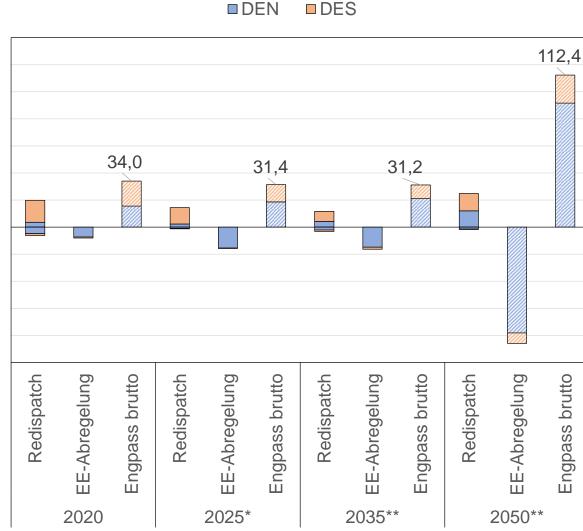
CRM – Differenz Leitungsauslastung, Kraftwerkszubau & Redispatch-Einsatz vs. REF

Agenda:

- Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- 6 Szenario DSM
- 7 Fazit






- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
 - Motivation
 - Strommarkt
 - Übertragungsnetz
 - Zwischenfazit
- Szenario DSM
- **Fazit**

CRM – Entwicklung Engpassmanagement 2020 - 2050

Auch im CRM Szenario kommt es in 2050 zu umfangreichen EE-Abregelungen auf Grund extrem hoher und umfangreichreicher negativer Residuallasten

AVERS ANALYSE VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

Zwischenfazit zum Szenario CRM

Agenda:

Projekt AVerS

2 Methodik

3 Szenario REF

4 Szenario SPLIT

5 Szenario CRM

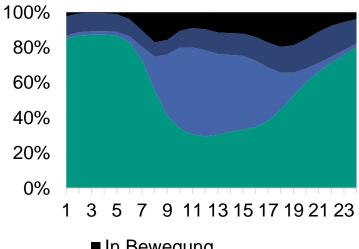
- Motivation
- Strommarkt
- Übertragungsnetz
- Zwischenfazit

6 Szenario DSM

7 Fazit

Chancen	Risiken	Konsequenz
 Kapazitätsmechanismen können erfolgreich den Zubau neuer Kraftwerks- und Großspeicherkapazität anreizen 	 Die Kosten für die Beschaffung neuer Kapazitäten sind schwierig planbar 	Die Einbeziehung von Interkonnektoren in Kapazitätsmechanismen ist essentiell
Kombiniert mit einer lokalen Komponente für die Standortwahl kann ein Kapazitätsmechanismus die Netzsituation ent- spannen	Kapazitätsmechanismen können im gekoppelten europäischen Strommarkt zu erheblichen grenzüber- schreitenden Effekten führen	 Die Parametrisierung eines Kapazitäts- mechanismus muss vor dessen Einführung sorgfältig geplant werden

- 1 Begrüßung und Projektvorstellung
- 2 Überblick der angewandten Methodik
- 3 Entwicklungen im Referenzszenario (REF)
- 4 Aufteilung der deutschen Preiszone (SPLIT)
- 5 Einführung eines Kapazitätsmechanismus in Deutschland (CRM)
- 6 Einfluss von Nachfrageflexibilisierung (DSM)
- 7 Fazit und Diskussionsrunde



- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
 - Motivation
 - Lastglättung
 - Strommarkt
 - Zwischenfazit
- **Fazit**

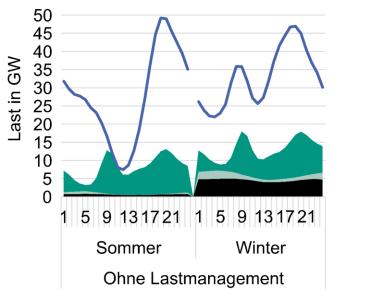
Einfluss von Nachfrageflexibilisierung: Hintergrund

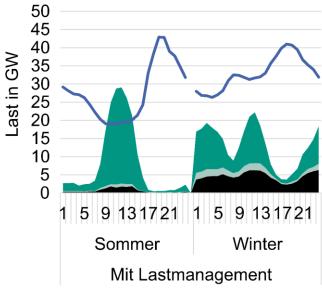
- Motivation
 - Substitution steuerbarer Erzeugungskapazitäten?
 - Reduktion von CO₂-Emissionen durch höhere Ausnutzung von EE?
- Methodik Lastmanagement: Simulation mit eingebetteter Optimierung:
 - Kostenminimierung geeigneter Prozesse aus Prozessperspektive
 - Residuallast als "Anreizsignal"
 - Beispiel: Elektrofahrzeuge als mobile Speicher: Dynamische Berücksichtigung der Verfügbarkeit der Fahrzeuge bei der Festlegung von Lastgrenzen für Lastverschiebung

Aufenthaltsort privater E-Fahrzeuge



- In Bewegung
- Öffentliche Parkfläche
- am Arbeitsplatz
- Zuhause

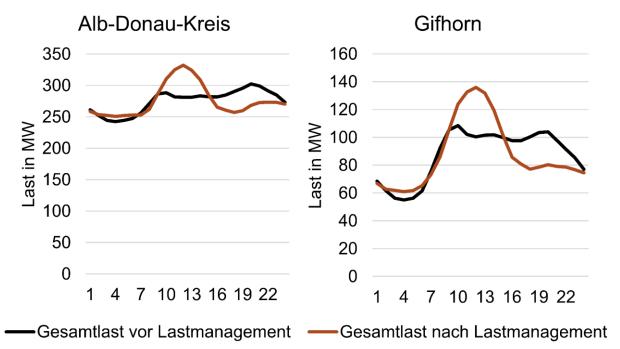


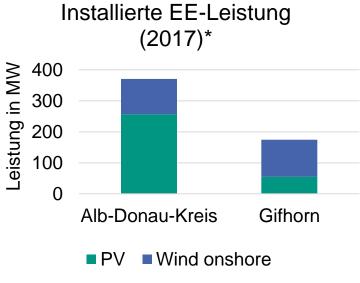

- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM
- Szenario DSM
 - Motivation
 - Lastglättung
 - Strommarkt
 - Zwischenfazit
- **Fazit**

Einfluss von Nachfrageflexibilisierung: Auswirkungen auf die Last

Durchschnittliche Verschiebung ausgewählter Lasten und Auswirkungen auf die Residuallast - 2040

- Wärmepumpe (Haushalt) Wärmepumpe (GHD) E-Fahrzeuge (privat) Residuallast
- Diffusion von Elektrofahrzeuge und Wärmepumpen stellt großen Hebel für Lastmanagement dar
- Insbesondere große Teile des Abendpeaks können durch Lastmanagement in die Mittagsstunden verschoben werden
- Verschiebung saisonal unterschiedlich



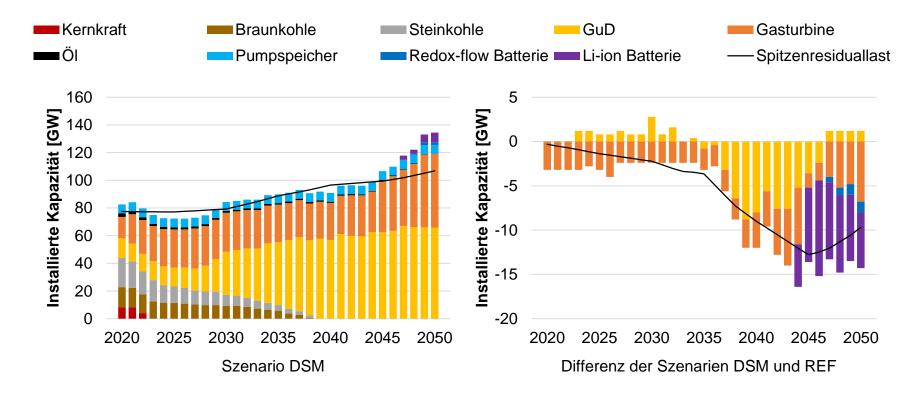

- 1 Projekt AVerS
- 2 Methodik
- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
 - Motivation
 - Lastglättung
 - Strommarkt
 - Zwischenfazit
- 7 Fazit

Einfluss von Nachfrageflexibilisierung: Auswirkungen auf die Last

Mittlere Gesamtlast vor und nach Lastmanagement (2040)

*Berechnung auf Basis von *Open Power System Data (2019): Data Package Renewable power plants. Version 2019-04-05.*

- Zentrale Anreizsignale für DSM führen insgesamt zu einer Glättung der Residuallast und erhöhten Kapazitätsfaktoren
- Die lokale Verfügbarkeit von Erneuerbaren Energien, d.h. die regionale "Residuallast" wird dabei nicht berücksichtigt


- Projekt AVerS
- Methodik
- Szenario REF
- Szenario SPLIT
- Szenario CRM

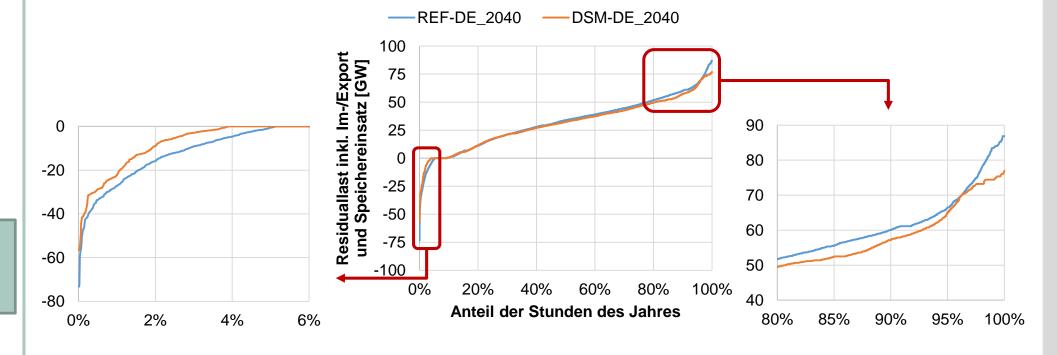
Szenario DSM

- Motivation
- Lastglättung
- Strommarkt
- Zwischenfazit
- **Fazit**

Entwicklung der konventionellen Kraftwerks- und Speicherkapazitäten im DSM-Szenario

- → Langfristig kann die Nutzung von Nachfrageflexibilität den Bedarf an konventionellen Spitzenlastkraftwerken und Großspeichern in Deutschland substantiell reduzieren
- → Aber: Phasenweise übersteigt der Rückgang der installierten Erzeugungskapazität den Rückgang der Spitzenresiduallast

Entwicklung der Residuallastverläufe im DSM-Szenario



Agenda:

- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM

6 Szenario DSM

- Motivation
- Lastglättung
- Strommarkt
- Zwischenfazit
- 7 Fazit

→ Langfristig kann die Nutzung von Nachfrageflexibilität sowohl die Spitzenresiduallast als auch negative Residuallasten substantiell reduzieren und somit zu einer besseren Systemintegration Erneuerbarer Energien beitragen

AVERS VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

Zwischenfazit zum Szenario DSM

Agenda:		
1	Projekt AVerS	
2	Methodik	
3	Szenario REF	
4	Szenario SPLIT	
5	Szenario CRM	
6	Szenario DSMMotivationLastglättungStrommarktZwischenfazit	
l _		

Fazit

Beitrag von Nachfrageflexibilität	Risiken
 Langfristig kann die Nutzung von Nachfrageflexibilität den Bedarf an konventionellen Spitzenlastkraftwerken und Großspeichern in Deutschland substantiell reduzieren 	 Gegenwärtig bestehen nur geringe monetäre Anreize für Lastflexiblisierung Anreizsignale, die zu einer zentralen Lastglättung führen, können regionale Lastspitzen nach sich ziehen
Neben reduzierten Spitzenlasten kann Lastmanagement auch negative Residual- lasten abmildern und sowie zur Integration von Erneuerbaren Energien beitragen	
Insbesondere die Diffusion von Elektro- fahrzeugen stellt, sofern diese steuerbar sind, einen großen Hebel für Lastverschie- bung dar	

- 1 Begrüßung und Projektvorstellung
- 2 Überblick der angewandten Methodik
- 3 Entwicklungen im Referenzszenario (REF)
- 4 Aufteilung der deutschen Preiszone (SPLIT)
- 5 Einführung eines Kapazitätsmechanismus in Deutschland (CRM)
- 6 Einfluss von Nachfrageflexibilisierung (DSM)
- 7 Fazit und Diskussionsrunde

AVERS ANALYSE VERSORGUNGSSICHERHEIT SÜDDEUTSCHLAND

Fazit und Diskussionsrunde

1	Projekt AVerS
	•

2 Methodik

Agenda:

- 3 Szenario REF
- 4 Szenario SPLIT
- 5 Szenario CRM
- 6 Szenario DSM
- 7 Fazit

Ausgangssituation	Herausforderungen	Lösungsansätze
Ambitioniertes CO ₂ Vermeidungsszenario bedingt einschneidende Maßnahmen in allen Sektoren	 Unter Annahme eines deutschen Kernkraft- und Kohleausstiegs sowie Verzögerungen beim Netz- ausbau besteht in den 	Lastmanagement kann einen deutlichen Beitrag zur Sys- temintegration von Erneuer- baren Energien leisten
Strombasierte Prozesse und innovative Produktionsver- fahren können zu einer star- ken Erhöhung der Strom- nachfrage im Industriesektor	nächsten Jahren erheblicher Bedarf an neuer Kraftwerks- kapazität Kurzfristig ist Netzausbau	Ein Kapazitätsmechanismus mit lokalen Komponenten kann neue Kapazitäten anrei- zen und zielgerichtet platzieren
 Zur Erreichung der Klimaziele ist unter diesen Voraussetzungen ein sehr großer Ausbau 	essentiell, langfristig werden jedoch weitere Flexibilitäten wie Großspeicher und Lastmanagement benötigt, die durch das aktuelle Marktdesign nur eingeschränkt angereizt	Regionale Preissignale können eine sinnvolle Ergänzung zu weiterem Netzausbau sein
der Erneuerbaren Energien erforderlich	werden	Die Aufteilung der deutschen Preiszone senkt mittelfristig die Engpassvolumen, aber

Risiken

bringt **neue langfristige**

