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Abstract—This paper presents and evaluates a differential
geometric model for single and double track vehicles, which
allows to estimate internal state parameters (steering angles,
velocities, wheel speeds, ...) from a given planar trajectory over
time. Possible applications include accident reconstruction from
video footage, constraining trajectory optimization by physical
limits, and extracting control parameters a-priori from trajec-
tories, for use in open-loop (non-feedback) controllers for short
intervals. The model is easy to compute, yet the evaluation with
IPG CarMaker suggests a good level of accuracy.

I. INTRODUCTION

Vehicle models are applied in driver assistance systems
to make the behavior of the ego vehicle computable using
simplifying assumptions to a certain degree. Commonly these
models are based on differential equations that allow to predict
the vehicle behavior based on the control inputs.

The model presented here for evaluation is a (single or
double track) model with a focus on easy computation based
on differential geometry properties of the given trajectory,
assuming it is twice continuously differentiable (hence the
name C2 model). Applications include deriving the control
commands from a pre-computed trajectory, or supporting the
computation of a physically feasible trajectory (e.g. by varia-
tional methods, [10]) by providing a simple way of imposing
hard constraints on control inputs, such as steering angles and
angular velocities, or vehicle speeds and accelerations. The
applicability of the model for both purposes will be evaluated
in this paper.

II. STATE OF THE ART

Depending on the desired level of detail and the system
information available, there exist different approaches for mod-
eling vehicle dynamics [5], which can be used for predicting
the behavior—and therefore the future trajectory—of an ego
vehicle. The most common method to plan this trajectory is to
use differential equations to model the influence of the control
parameters on the vehicle state ([7], [1], [4], [6]), and thereby
predict the trajectory given a set of control parameters. This
approach is advantageous for assuring that only valid control
parameters are used in optimization, and—depending on the
vehicle model—it can be very accurate. Yet, the computational
effort is high and modeling can be difficult because trajectory
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planning is performed by manipulating the inputs, not the
trajectory itself. To limit the computational effort, simplified
models of vehicle dynamics are used.

To the knowledge of the authors, thus far no detailed
model for analyzing a positional trajectory for state and control
parameters has been presented and evaluated for automotive
applications.

III. MODEL DERIVATION

In this section the presented model will be motivated and
derived geometrically.

A. Vehicle Model

The vehicle model in this paper can be a single track
or double track model. The following vehicle parameters are
utilized in the model:

• The wheel base l, which is the distance between the
front and the rear axle.

• The half width h of the track, which is half the distance
between wheels on the same axle.

• The tire radii rfront and rrear at the respective axes.

The vehicle state is taken to be comprised entirely of

• its position ξ = [ξx, ξy]T, which is taken to lie on the
center of the rear axle (cf. Fig. 1),

• its velocity dξ/dt = ξ̇ = [ξ̇x, ξ̇y]T, which always
points into the heading direction ψ,

• its steering wheel angle δw, which maps to the left
and right tire angles δleft, δright, and to the mean tire
angle δ̄ = (δleft + δright)/2, and

• its tire rotation angles around the car axes, for the
front left, front right, rear left and rear right tires
ρfl, ρfr, ρrl, ρrr.

Notable simplifications, some of which are incorporated in
the single track model [8], include:

• The tire slip is assumed to be zero at all tires at all
times, both for lateral and longitudinal slip.
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• Bank (roll) and pitch angles of the vehicle are not
considered.

• The vertical axis is not considered; the center of
gravity lies in the 2D plane.

• Wheel loads and varying radii are not considered.

• Any internal structure, such as engine and gears, is
omitted. (For vehicle control, a drive-by-wire system
is assumed to be in place that operates based on
desired steering wheel angles δw and accelerations a.)

B. Trajectories

A trajectory is taken to be the planar curve described by a
car’s reference point, which lies on the center of the rear axle
(Fig. 1). This planar curve is defined by

ξ : T → X × Y (1)

where T is an interval of time, and X and Y represent
Cartesian coordinates on the surface on which the ego vehicle
can navigate. Further, ξ must lie in C2 (i.e. be twice continu-
ously differentiable), to assure that all parameters established
here are well defined. If the surface has a non-Cartesian
parametrization (for example due to curvature), the model
derived in this section is invalid and Riemannian geometry
must be applied [9, p. 127ff.], which is beyond the scope of
this paper. However, it is assumed that taking the trajectory
to lie on a Euclidean plane represents a suitable simplification
for a wide range of practical applications.

C. State and Control Parameters

Derivatives of the trajectory will be denoted ξ̇ = dξ/dt
and ξ̈ = d2ξ/(dt)2. For any point along the trajectory, there
is a base of R2 consisting of a tangent vector and a normal
vector [3, p. 19]

T =
ξ̇

‖ξ̇‖
and N =

[
0 −1

1 0

]
T . (2)

The tangent vector must be continuous for the curvature
(required later, in (5)) to be finite. Where T cannot be directly
computed via (2), because ξ̇(t) ≡ 0 on any interval I , its value
on I can be set to either of the outer limits for T on I . These
limits should be identical, otherwise again the curvature will
be infinite. If such limits exist for no choice of I , then the car
is stationary (ξ̇(t) ≡ 0 for all t) and no directional parameters
can be derived.

If the car’s coordinate system is identified with the (T ,N)
base, the longitudinal speed and acceleration can thus be
obtained as the projection of total velocities and accelerations
onto the tangential vector:

v =
〈
T
∣∣∣ ξ̇〉 =

〈
ξ̇
∣∣∣ ξ̇〉
‖ξ̇‖

= ‖ξ̇‖ and (3)

a =
〈
T
∣∣∣ ξ̈〉 =

〈
ξ̇
∣∣∣ ξ̈〉
‖ξ̇‖

, (4)

where the identification of bases makes use of the assumption
that the slip be zero (i.e. 〈N |ξ̇〉 ≡ 0 at all times). It should

δleft

ξ(t)

N
T

Rrear

h

Rleft
rear Rleft

front

l

Fig. 1: Ackermann steering geometry in a constant curvature turn. The
individual trajectories of every point on the car are concentric circles or varying
radii. All tires are aligned tangential to their respective circles. The steering
angles δw and δs effect the turn radius Rrear of the car’s reference point along
ξ. In a right turn, Rrear < 0, so Rleft

rear = Rrear − h produces a larger absolute
radius.

also be noted that (4) is not ‖ξ̈‖ unless the vehicle is moving
straight ahead.

The curvature is defined (for arc length s; [2], [3]) by

κ =
〈

d
dsT

∣∣N〉 =
det[Ṫ ,T ]

‖ξ̇‖
=

det[Ṫ , ξ̇]

‖ξ̇‖2
=

det[ξ̈, ξ̇]

‖ξ̇‖3
(5)

and specifies the circular approximation of the trajectory at
every point: The circle that approximates ξ lies in the direction
of N off the trajectory at a distance and radius of κ−1 =
Rrear, the turn radius of the ego vehicle’s reference point (cf.
Fig. 1) (not to be confused with the rear tire radius, rrear). Both
curvature and radius are negative for right turns (see Fig. 1).

The turn radius of the car is effected by the front tire angles,
δs, with s ∈ {left, right}, and (indirectly) the steering wheel
angle δw. Figure 1 shows the geometry that is used to derive
the front left tire angle δleft from the rear axle turn radius Rrear
(described by the trajectory ξ). Since all four tires describe
concentric turn circles (albeit at four different radii Rs

rear and
Rs

front), and since their direction of motion is tangential to their
respective circles, the right triangle in Fig. 1 can be established.
The effect of the front tire angle δs on the rear tire turn radius
Rs

rear is mediated by the wheel base l and the half track width
h via:

δs = arctan

(
l

Rs
rear

)
= arctan (l κs)∣∣∣ ∣∣∣

= arctan

(
l

Rrear ±s h

)
= arctan

(
l κ

Rrear

Rs
rear

) (6)

(where κs is the curvature of the individual front tire trajecto-
ries, and ±left = −,±right = +) using the curvature calculated
in (5). It should be noted that the use of atan2 is not necessary
here since the tire angles are certainly limited to ±π/2.

Using the tire radii rfront and rrear, the angular velocities of
the tires can be obtained as

ρ̇rs =
‖ξ̇‖
rrear
· R

s
rear

Rrear
=
‖ξ̇‖
rrear
· Rrear ±s h

Rrear
(7)

and

ρ̇fs =
‖ξ̇‖
rfront

· R
s
front

Rrear
=
‖ξ̇‖
rfront

·
√
l2 + (Rrear ±s h)2

Rrear
. (8)
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C2
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Fig. 2: Structure of the evaluation of the C2 model: A reference maneuver
is passed to CarMaker for simulation. The simulation yields a trajectory ξ1
and internal parameters a1, δ̄1, etc. The trajectory is passed to the C2 model.
The resulting estimated parameters are compared directly in Figs. 9 and 10.
Accelerations and steering wheel angles are further used as control inputs to
another simulation, which again yields a trajectory ξ2 and internal parameters
a2, δ̄2, etc. The obtained results are discussed in the sections indicated by
dashed arrows.

IPG Driver CarMaker
Dynamic

Simulation

refer-
ence
ma-

neuver

δw

brake

gas

ξ1

a1

δ̄1

. . .

Fig. 3: Structure of the first simulation from Fig. 2. A given reference
maneuver is passed to the CarMaker “Driver” subsystem, which finds control
parameters δw, brake and gas to execute the reference maneuver as closely as
possible. These inputs are then passed to the CarMaker Dynamic Simulation
of the actual car, yielding the outputs described in Fig. 2.

The heading direction ψ, or yaw, can be specified relative
to a “north” direction n as

ψ = ](T ,n) = ](ξ̇,n) = atan2
(

det[n, ξ̇], 〈n|ξ̇〉
)
, (9)

and its derivative, the yaw rate, is thus

ψ̇ =
det[ξ̈, ξ̇]

‖ξ̇‖
. (10)

IV. MODEL EVALUATION

The properties defined above can be computed for every
point along any twice continuously differentiable (non-static)
trajectory. This allows to transform a surface curve into control
and state parameters for a simple vehicle model. In this section,
the model accuracy for two possible applications will be
highlighted.

A. True Maneuver vs. C2 model Analysis

This is arguably the most conclusive comparison. An
observed trajectory ξ1 is analyzed by the C2 model to estimate
the state variables and control parameters that were attained
during the maneuver. Common purposes of this step would be
the following:

C2 model CarMaker
Dynamic

Simulation
Simulink

model

δ̄ 7→ δw

×

i

ξ1

δ̄C2 δw
C2

aC2

brk.

gas

ξ2

a2

δ̄2

. . .

Fig. 4: Structure of the second simulation from Fig. 2. A given trajectory ξ1 is
passed to the C2 model to obtain parameters aC2 , δ̄C2 . Desired accelerations
aC2 are passed to an IPG ACC model included in CarMaker, which finds
control parameters brake and gas to achieve these accelerations. The mean
tire angle δ̄C2 is turned into steering wheel angles δw

C2 by a linear factor i,
as a simplification. These inputs are then passed to the CarMaker Dynamic
Simulation of the actual car, yielding the outputs described in Fig. 2.

• “Reverse-engineering” vehicle states from e.g. a video
camera or on-board recording of positions.

• Constraining trajectory optimization processes to
physically possible states.

In this evaluation, a BMW 118i is modeled in the simulation
software IPG CarMaker. The simulation is performed at a rate
of 1 000 Hz in CarMaker, the output values as passed on to
the C2 model and used in the evaluation are sampled at a rate
of 100 Hz.

1) Sine Steering: To evaluate the robustness to steering,
the simulated BMW drives at a constant goal speed of v ∈
{6 km/h, 30 km/h, 50 km/h} and steers with a steering wheel
angle of δw = A · sin(2πt/τ), A ∈ [0, π], t ∈ [0 s, 40 s], τ ∈
[1 s, 20 s]. The true state variables from CarMaker, a1, δw

1 , ...
are compared to the estimates from the C2 model, aC2 , δw

C2 , ...
using the error metric (for any state quantity x)

Ex =

√
1

40 s

∫ 40 s

t=0 s
dt
(
x1(t)− xC2(t)

)2
. (11)

The error in Fig. 5b shows, that the mean tire angle
accuracy deteriorates with increasing frequency and amplitude
A of the steering wheel angle, as would be expected. The order
of errors is approximately 0.2 rad, with the error increasing ap-
proximately linearly with frequency, and slightly superlinearly
with the steering wheel angle.

Contrary to this, the errors in velocity (Fig. 5a) and accel-
eration show a salient pattern varying over the period length.
This pattern correlates with the car’s bank angle error and
can be attributed to a violation of the models assumptions for
the vehicle to remain level at all times. Remarkably the error
decreases for some period lengths at increasing amplitudes,
suggesting that parametrization errors, possibly in the tire radii,
are counteracted by the errors due to bank angles.

2) Race Track: To evaluate the model in a realistic combi-
nation of various maneuvers, the simulation is applied to the
Hockenheimring race track in Germany (a map can be found
in Fig. 7, black line). The race track has a length of 4.574
km and is driven in the clockwise sense. In the first step, the
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Fig. 6: Errors as shown in Fig. 5, as families of curves. (c) is plotted over f instead of τ , to reveal the linearity.
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Fig. 5: Errors obtained at the sine steering example (Sec. IV-A1) at v = 50
km/h.

CarMaker module IPG Driver is used to automatically drive
along the track at maximum speed; a top speed of 170 km/h
is attained. The comparison of true parameters with the C2

model estimates over the path length can be found in Fig. 10,
the correlation between them is shown in Fig. 9. The latter
states the mean error µ and the standard deviation σ of the
error. It furthermore states the slope of the linear least squares
approximation of the measurements, namely the pseudoinverse
solution m to

x1(t) ·m = xC2(t)

for any state quantity x over all measurement times t, which
yields the m to minimize

∫
dt (x1(t)·m−xC2(t))2, consistently

with (11). This m indicates a systematic factor between the
estimated value xC2 and the ground truth x1.

The velocities (Fig. 9b) show an excellent correlation, the
accelerations (Fig. 9a) deviate more notably, partly due to dis-
cretization. Figs. 9e and 9f show mostly a good correlation, but
also the effects of the violated assumption of zero longitudinal
slip: The small spikes to the left and right occur, when either
the brake, or the gas pedal is pushed notably. The tire speed
changes almost instantaneously (the BMW has a rear-wheel
drive), while due to slip, the vehicle speed does not react
without delay. During this delay the spikes of high deviation
form, since the C2 model cannot derive the change in wheel
speed from the vehicle speed. The front wheels, which are not
connected to the drivetrain, are not subject to these effects.

The tire steering angles (Fig. 9c–f) exhibit a slightly curved
trend, which can stem from errors in wheel base l and half
track width h.

Figure 10d shows an extract of the tire angle where δ̄C2

deviates notably from δ̄1. The extract corresponds to the slight
and elongated left bend between 1 km and 2 km (cf. Fig. 7).
The C2 model estimates a steering angle that would follow the
bend at perfect grip. The simulated BMW however passes the
bend in a drift/slip state, with a notable lateral speed 〈ξ̇|N〉 ≈
−3 km/h, as shown in Fig. 10e (however at longitudinal speed

4 km

3 km

2 km1 km

n

0 km
4.574 km ξ1

ξ2

Fig. 7: Hockenheimring (true shape ξ1, black) traversed with an open-
loop controller (ξ2, white) based only on precomputed steering angles and
accelerations extracted from a normal traversal ξ1 via the C2 model. The
milestones (in kilometers) are shown as dots.

〈ξ̇|T 〉 ≈ 170 km/h), and is thus oversteering. Since lateral slip,
and thus lateral speed is not considered in the C2 model, the
tire steering angle δ̄C2 is lower (due to a lack of oversteering).

B. C2 Model Input vs. Execution of Results as Open-Loop
Control Parameters

In this comparison, it is shown how a given trajectory ξ1
can be analyzed by the C2 model to find control parameters
aC2 , δw

C2 for an open-loop (non-feedback) controller. The re-
sulting trajectory ξ2 is compared to the original ξ1.

The analysis in this step is less conclusive than the one
in the previous Section IV-A, since a major factor is how
well the ego vehicle (in this case the IPG ACC along with
the assumption of a constant steering ratio i ≈ 18.4) ex-
ecutes the control parameters aC2 and δw

C2 . Therefore, this
evaluation essentially demonstrates a lower bound of quality,
which can be achieved by a very simple control model. More
sophisticated models would likely be able to reproduce the
desired parameters aC2 , δ̄C2 much more closely (while still not
using feedback). Figure 7 shows the positional deviation that
would occur if the entire Hockenheimring is navigated via the
offline control parameters aC2 , δw

C2 by an open-loop controller.
Naturally, navigating approximately 5 km without feedback
based on predetermined parameters is bound to produce a
significant error, however the resemblance between ξ1 and ξ2
is notable. An evaluation that divided the Hockenheimring into
increasingly small segments and measured the mean end point
deviation per segment length converged towards an order of
3 cm/1 m.

1) C2 Model Output vs. Execution of Results as Open-
Loop Control Parameters: Even though the comparison of
the C2 model outputs and the original control parameters of
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ξ1 show promising results, the second simulation shows a
significant offset, as discussed above. To convey an impression
of how the deviations in the steering ratio and the drive-by-
wire ACC used in the second simulation affect the quality of
the results (compared to influences due to the simplifications
in the C2 model), Fig. 8 compares the velocities vC2 and v2
on a representative extract along the time axis. What can be
seen is a delay of approximately 0.7 s between desired input
acceleration and the ACC reaction, however for decelerations
the delay is only 0.1 s. This asymmetry results in a peak dif-
ference of about 3% between desired and achieved velocities,
and also to a misalignment between delayed velocities, nearly
undelayed steering angles (delay below 0.01 s) and the actual
track position. Since both steering wheel angle magnitudes and
reaction times match the desired values closely, they are not
depicted. This implies that the main source of error between
ξ1 and ξ2 are the simple ACC and steering ratio, which are
likely outperformed by state-of-the-art drive-by-wire systems.

V. CONCLUSION

In this paper, the C2 model was derived geometrically
and applied to different maneuvers for different purposes in
the simulation tool CarMaker by IPG. It could be shown that
the analytic possibilities of this model are adequate. A given
trajectory can be analyzed for the internal state parameters of
a vehicle with an accuracy of more than 99.9% for velocities
and less than 99.7% for steering angles. This may allow
for applying the C2 model for purposes like reconstructing
accidents or constraining trajectory optimizations.

A second purpose of the C2 model was to use the state
parameters a, δ̄ (acceleration and mean tire steering angle) as
inputs to a drive-by-wire system. Due to the simplicity of
the drive-by-wire model, the results merely present a lower
bound of quality. Still a deviation of just 3 cm/1 m per driven
length was be achieved for a simple open-loop (non-feedback)
controller.

The results are promising; however it is necessary to
produce a more sophisticated evaluation of the C2 model.
A wider range of maneuvers must be evaluated to assess the
analytic potential of the C2 model; also, real measurements of
actual vehicles must be used to complement the simulated data
to study the influence of uncertainties. Furthermore, tests with
more realistic drive-by-wire systems are necessary to deter-
mine the degree of confidence, by which C2 model outputs can
be used as open-loop control inputs to reproduce a trajectory.
These tests need to comprise both simulations with more
sophisticated models, and tests in actual vehicles equipped with
drive-by-wire functionality. A significant increase in quality of
the C2 model predictions is anticipated, however a quantitative
estimate is not possible at this stage.
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Fig. 9: Correlation plots of the vehicle parameters along the Hockenheimring
track. The vertical axis always refers to the C2 model estimates, the horizontal
axis shows the true data. Mean error µ and standard deviation σ are given
inside the plots along with the slope m of the least squares linear approx-
imation, to indicate systematic scale errors. (a): Acceleration. (b): Velocity.
(c)–(f): Rotation speeds for each of the wheels. The arrows in (e) and (f)
indicate errors due to longitudinal slip when either brake (peak to the left) or
gas pedal (peak to the right) are pushed notably. (g), (h): Steering angles for
the front wheels.
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Fig. 10: Parameters extracted along the Hockenheimring (white) compared to
true simulation data (black). (d) and (e) show the effect of oversteering that is
not modeled, leading to underestimated steering angles during slip. The C2

model estimate in (e) is zero, since slip is not modeled.

2451




