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Abstract 

Plug-in vehicles powered by renewable energies are a viable way to reduce 
local and total emissions and could also support a highly efficient grid operation. 
Indirect control by variable tariffs is one option to link charging or even discharg-
ing time with the grid load and the renewable energy production. Algorithms are 
required to develop tariffs and evaluate grid impacts of variable tariffs for elec-
tric vehicles (BEV) as well as to schedule the charging process optimisation. 
Therefore a combinatorial optimisation algorithm is developed and an algorithm 
based on graph search is used and customised. Both algorithms are explained 
and compared by performance and adequate applications. The developing ap-
proach and the correctness of the quick combinatorial algorithm are proved 
within this paper. For vehicle to grid (V2G) concepts, battery degradation costs 
have to be considered. Therefore, common life cycle assumptions based on the 
battery state of charge (SoC) have been used to include degradation costs for 
different Li-Ion batteries into the graph search algorithm. An application of these 
optimisation algorithms, like the onboard dispatcher, which is used in the Ger-
man fleet test ”Flottenversuch Elektromobiliät”. Grid impact calculations based 
on the optimisation algorithm are shown.  
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1 Introduction 

By successfully launching hybrid technology into the market and through addi-
tional progress in battery development, electric mobility is again considered ca-
pable of becoming a viable option for a marketable vehicle concept. Promising 
advantages of battery electric vehicles (BEV) are not only high efficiency, reduc-
tion of local and total emissions, but also a better integration of fluctuating re-
newable energy and the possibility of highly efficient grid operation by intelligent 
integration of BEVs, too.  

Figure 1: BEV CO2 emissions per km as a function of the used energy 
and their consumption. The grey highlighted areas illustrate 
different sources assumed for the electrical energy production. 
Mix 2007 is the energy mix in 2007 used in Germany in 2007, 
mix 2050 stands for a production mix according to a pilot 
study of the federal ministry of environment (BMU) for Ger-
many 

 

In order to illustrate the connection between CO2 emissions and sources of 
electricity generation, figure 1 compares emissions of different BEV pursuant to 
their consumption as well as average and targeted emissions for new vehicles 
with combustion engines. The emissions for produced electricity in gram CO2 
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per kWh are plotted on the x-axis. The grey highlighted areas point out ranges 
for emissions based on different sources of electricity generation or mixes of 
sources. For example, the CO2 emissions of coal power plants vary from 800 
gCO2/kWh to more than 1,000 gCO2/kWh depending on power plant efficiency 
as well as quality of coal. Mix 2007 highlights the CO2 emissions of the German 
energy mix in 2007. Mix 2050 illustrates the C02 emissions if the German goals 
for 2050 according to the pilot study from [1] will be reached. The emissions in 
gram CO2 per km, plotted on the y-axis, are due to the coherence between 
emissions per kWh and the consumption kWh/km. The black line shows aver-
age CO2 emissions of today’s cars with combustion engines in Germany (~170 
g CO2/km). The dotted green line indicates targeted emissions for vehicles with 
combustion engines in 2012 (130 gCO2/km). The diagonal grey, blue, and or-
ange lines stand for the different exemplary energy consumptions of BEV so 
that the lowest line (orange) e.g. demonstrates the consumption of a CityEL 
(0.05 kWh/km [2]). To reduce emissions with BEVs the supplying fuel source for 
electrical driving is crucial. Only by supplying e-mobility with renewable energy 
is a significant CO2 reduction within reach. 

The expected immense expansion of renewable and decentralised energy sys-
tems [1] will generate a high supply of fluctuating energy in the grid. By focusing 
on the German situation, the German Association for Electrical, Electronic & 
Information Technologies VDE is convinced that the necessary expansion of 
the grids can be delayed or even avoided by using controllable decentralized 
power plants and/or storage systems [3]. Energy systems with a high share of 
fluctuating generation need demand side management to meet the supply 
curve. Therefore it is necessary to implement adjustable load and/or storage 
systems. From 2011 onwards, German customers of household electric con-
nections have the right to claim for demand or time variable tariffs [4]. These 
tariffs should provide an incentive to save energy and shift the energy demand 
to the time of production. The handling of these tariffs can be easily imple-
mented with smart electric meters since they are able to show actual demand 
and time of use. At the beginning 2010 it becomes mandatory to install smart 
electric meters in new buildings and during renovations. These meters will lead 
to new possibilities for the billing of BEVs. If customized tariffs for households 
are realised, special tariffs for the new load from BEVs are a possible next step. 

The required power is the key parameter for BEVs, not the required energy. At 
a penetration of 10% of German passenger cars, the energy demand would be 
approximately 11.8 TWh (0.2 kWh/km as average BEV consumption and 
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around 41.3 million passenger cars in Germany) which is approximately 2% of 
the German gross energy production and approximately 27% of the produced 
solar and wind electricity in Germany in 2008 [5]. In figure 2 a weekly load pro-
file of the German transmission grid from October 2008 and the simulated addi-
tional load by 100% substitution of passenger cars with BEVs charged directly 
after each trip is shown exemplarily. The graph illustrates just as [5] [6] [7] and 
other publications have also pointed out, that BEVs create demand peaks at 
similar time frames like the peaks in the existing electric energy profile. To avoid 
grid stress it is necessary to control and shift the charging process of BEVs. 
Parking times of passenger cars are on average between 93 and 96% of their 
lifetime [8] and so shifts of the charging times are often possible without nega-
tive impacts. The possible load shifting times and the indirect control of grid-
connected battery vehicles are shown in [9]. BEVs could also be used to pro-
vide auxiliary services. As auxiliary services in this context are meant feeding 
electricity back into the grid, stopping and starting the charging process. In [10] 
Williett Kempton established the wording “Vehicle to grid” (V2G) to describe the 
electric power resources from vehicles. 

Figure 2:  Load of the German energy transmission grid with the simu-
lated energy demand for BEV penetration of 100% passenger 
cars. The graph underlines the fact that the timeframe of en-
ergy demand and demand peaks of BEVs overlap 

 
Assumptions: 3.5 kWh grid conection; 90% efficiency battery charging; electric vehicles  
(approx.41.3 Mio.), thereof: BEV: 150 km electr. range and  0.18 kWh energy use per km 
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In [5] [6] and [11] coordinated and uncoordinated charging options for BEV are 
discussed. [6] also discusses differences in directly controlled and indirectly 
controlled charging processes. For coordinated directly controlled charging, a 
utility (for example the Distribution System Operator (DSO)) plans and controls 
the charging process for all cars within the system. For both, a directly and indi-
rectly controlled charging communication infrastructure has to be installed. In [6] 
these infrastructural requirements are discussed and have been proved in and 
for practise in many fleet tests and projects all over the world. 

Indirect control via variable electricity tariffs and a mobile decentralised load 
dispatch device could be one possible solution to manage charging times. 
Among others, the variable tariffs indicate the electricity supply and demand. 
Thus, it is possible to charge the vehicle batteries simultaneously with electricity 
generation from renewable energies as requested for effective CO2 reductions 
and the avoidance of grid stress. The suggested method to schedule the BEV 
charging process is to integrate an embedded control device into the vehicles. 
The control devices manage charging and discharging locally, according to 
variable tariff signals. In order to calculate the optimal charging schedule, the 
needs of the driver, utilities and vehicle specific data are taken into account 
which leads to optimisation tasks. 
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2 Different optimisation approaches 

The cost-optimised charging of the BEV battery is the target function of the op-
timisation in the mobile dispatching device. Constrains are illustrated in Figure 
3. The technical restrictions are: the charging infrastructure in use and the state 
and characteristics of the battery system. Economic terms depend on the con-
tract for energy / power supply and provision. Further restrictions are driver de-
mands (time and range for the next trip). Variable tariffs represent the energy 
supply and the energy demand. By shifting the charging time (or even a tempo-
ral discharge of the battery), energy cost could be reduced. The load shift also 
leads to a reduction of peak load in the grid. As a result of the optimisation, a 
charging and discharging schedule for the parking time should be calculated. 
This schedule will be used to control the charging of the BEV battery. 

Figure 3: Outlines influencing factors for the charging optimisation of BEV 

 

An optimised system will typically only be optimal in one application or for one 
audience. Different algorithmic approaches could be the choice for different re-
quirements. To implement the mobile decentralised tariff-based charging 
schedule in an embedded computing system, a time, processing and resource 
effective algorithm is needed.  
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A general way to solve optimisation problems is by linear programming. Thereby, 
the problem is described with a set of variables. A special solver maximizes a 
linear target function under the restrictions of linear boundary conditions. If some 
elements of the solution have to be discrete (e.g. the state of a battery which is 
either “load” or “idle”), the problem may become very complex. In this case 
(mixed) integer linear programming is used. The runtime of such a solver can be 
exponential in terms of the input. The computation times of this approach solved 
by a commercial solver turned out to be too long for calculations on resource-
efficient-embedded systems or grid impact calculations for a mass of BEV. 

A different way to solve optimisation tasks is the use of combinatorial algorithms 
which provide simple rules on how a schedule should be created. The challenge 
of those algorithms is that the optimality and correctness of the calculated solu-
tion may not be definite. This work presents a combinatorial algorithm to calcu-
late the optimised charging schedule for a BEV battery and proves its correct-
ness and optimality. This algorithm uses a rather simple battery model without 
considering degradation costs. It is also shown how additional requirements can 
be integrated. 

Important for the V2G option of feeding energy back to the grid are the battery 
degradation costs. Therefore highly simplified battery cost degradation models 
are used. These cost models are described later. One of these is a monotone 
decreasing function based on the depth of discharge (DoD). For this case, the 
developed combinatorial algorithm with all its strengths cannot be used and 
therefore a graph search algorithm is used. This algorithm will also be intro-
duced and evaluated within this paper. 

Discrete optimisation algorithms can solve optimisation tasks by graph search. 
If assumed that the battery only charges and discharges exactly 1 unit of en-
ergy, the system can only be in M+1 different states at every time step (M is the 
max. capacity of the battery). If there are tmax time steps, a graph of (M+1)*(tmax) 
nodes can be created, where each node represents a state and a time. Then 
edges are introduced which represent possible state transitions. Each edge can 
be assigned certain costs/gain which occur through this transition (e.g. costs for 
charging, gain for discharging). Finding an optimal plan can then be solved by 
finding the best path from an initial node at time 0 to a node at time tmax. This 
method is also used for similar optimisation problems of energy systems with 
different components e.g. combined heat and power (CHP) plants storage and 
heating system. 
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3 The combinatorial algorithm 

For the following algorithm it is assumed that the battery is empty at the start 
and end of the schedule. The battery has a maximum capacity M and can be 
charged and discharged at different, time-dependent prices. Additional require-
ments can easily be brought in later, but they make the algorithm and especially 
the following declarations and proofs more complex. 

3.1 Input values 

The scheduling problem is formally defined as follows:  

• M is the maximum capacity of the battery. 

• tmax  is the number of time steps for which a schedule must be generated 
and T = {0,…, tmax} is the corresponding set of time steps. 

• priceC:  T →  R+
0   represents the costs for charging one unit of energy at 

time t 
• priceF:  T →  R+

0   represents the gain for feeding one unit of energy into the 
grid at time t 

An important precondition is that the gain for feeding energy into the grid is 
never higher than the costs for charging the battery at the same time: 
 
Precondition: 

∀ t ε T:  priceC(t) ≥ priceF(t) 

This constraint avoids that the battery is charged and discharged at the same 
time.  

3.2 Result values 

The result has to be a schedule P, which (1) satisfies the boundary condition 
and (2) maximizes the gain. It is defined as follows: 

• P: T → {-1;0;1} is the schedule produced by the algorithm. For each time 
step t the function value P(t) could be: 

− P(t) = -1 means, that the battery feeds one unit of energy into the grid,  

− P(t) = 1 means, that the battery charges one unit of energy from the grid 

− P(t) = 0 means, that the battery is idle. 
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• Gain(P) = [∑ t ε T ∧  P(t)<0 (- P(t)) priceF(t)]  - [∑ t ε T ∧  P(t)>0 P(t) priceC(t)]  is the 

gain of the schedule. It is the total gain for feeding into the grid minus the to-
tal cost for charging the battery. 

The state of charge after a time step t ε T is C(t) = ∑ i= 0…t P(i). We denote the 
initial state, before the first step of the plan, as C(-1).  

It is assumed that the battery is initially and finally empty, i.e. C(-1) = 0 and 
C(tmax) = 0. The state of charge is never less than empty or more than M, so 
that the following boundary condition results: 

Boundary Condition:  

∀ s ε T:   0 ≤ C(s) ≤ M 

 

3.3 Variables used by the algorithm 

An important property of the algorithm is that it uses a sorted list of tuples L =  
{(p1,l1),(p2,l2),…}. Each tuple (pi,li) represents a time step li ε T and a price pi ε 
R+

0. 

The list has two properties: 

1) L is sorted by the price pi  in ascending order. The first element has the 
lowest price p1 

2) L contains at most M elements. If L temporarily contains more than M 
elements, those elements at the end of the list, i.e. with the highest price, 
have to be removed. 

The algorithm starts with an empty list L and runs through all time steps t from 0 
to tmax. Thereby the list stores information about time steps before t, at which 
units of energy can be obtained. I.e. if, at a time step t, a unit of energy can be 
charged from the grid at price priceC(t) a tuple (priceC(t),t) is inserted into L. If 
the algorithm later decides to use that unit of energy for later discharging, the 
tuple is removed from the list. Additionally, every discharging at time t for dis-
charging price priceF(t) also adds a tuple (priceF(t),t) to L since the decision to 
discharge can be undone to get back that unit of energy for later use. As we 
see, there are these two possibilities of obtaining energy, both by charging and 
by undoing discharging decisions. 
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3.4 The algorithm 

The algorithm creates a schedule PAlg as follows. Further on the algorithm is 
explained, by referring to the line numbers on the left: 

 

L := {};     // The list is initially empty 

PAlg := 0, ∀ t ε T;    // The schedule is initially idle for all time steps 

 

1. FOR t := 0 TO tmax DO   // go through all time steps 

 { 

2. IF (L ≠ {})     

3.  AND IF (p1 < priceF(t)) THEN // (p1, l1) is the first tuple of the list L 

  { 

4.  PAlg (l1)  := PAlg (l1) + 1; 

5.  PAlg (t)  := PAlg (t)   - 1; 

6.  REMOVE (l1,p1) FROM L; 

7.  INSERT (t, priceF(t)) INTO L (sorted); 

  } 

8.  INSERT (t, priceC(t)) INTO L (sorted); 

9.  IF (|L| > M) THEN 

10.   TRIM L to the first M elements; 

} 

 

In words:  

While going through all time steps (Line 1), the elements of the list L contain 
time steps before time step t at which a unit of energy can be obtained. The 
cheapest unit of energy which is available is the first tuple in the list (p1, l1). If at 
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a time step t the gain for feeding into the grid is higher than the costs for obtain-
ing the energy at an earlier point of time l1 (Line 3), then the algorithm obtains 
one unit of energy at time l1 (Line 4) and feeds it into the grid at time t (Line 5) 
and thereby increases the total profit of the plan. 

The next step of the algorithm is to update the list L: after one unit of energy is 
obtained at l1 (Line 4), the algorithm has to remove this option of obtaining en-
ergy from the list (Line 6). Instead, one additional unit of energy can now be 
obtained at time step t and at the cost of priceF(t) by undoing the discharging 
and setting the schedule PAlg (t) from -1 to 0 again (Line 7). 

In all cases, one unit of energy can later be obtained by charging at time step t 
at the cost of priceC(t). Hence, the tuple (t, priceC(t)) is inserted into the list L 
(Line 8). And at last, the amount of energy which can be charged before t and 
used later, is limited by the capacity of the battery. That is why L is trimmed to 
contain at most M elements (Line 10).  

Note that a time step t might occur twice in the list (Lines 7 and 8), if PAlg (t) = -
1, because by changing PAlg (t) to 0 and then to 1 two units of energy can be 
obtained. In that case, the price for getting the first unit of energy is priceF(t) 
and for getting the second unit of energy is priceC(t). But by the precondition 
and the ordering of L, the tuple (t, priceF(t)) is before (t, priceC(t)) in the list, 
hence the first unit of energy obtained from time step t is correctly price 
priceF(t). 

3.5 Proof of correctness 

The following paragraph shows that the algorithm satisfies the boundary condi-
tion after every loop (Line 1). By the definition of the state of charge we can 
write the boundary condition as:  

∀ s ε T:   0 ≤ C(s) ≤ M 

∀ s ε T:   0 ≤ ∑ i= 0…s P(i). ≤ M 
 

1. First, it is shown that∀ s ε T:   0 ≤ ∑ i= 0…s P(i). (1): 

We show by induction that this condition is satisfied after every loop t of 
the algorithm (line 1), which implies that the condition is also satisfied for 
the resulting plan. 
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At the beginning, the algorithm sets PAlg:= 0, ∀ i ε T and hence the sum 
∑ i= 0…s P(i) is also 0 for all s ε T and condition (1)  is satisfied. 

Now assume that (1) is satisfied at the beginning of loop t ε T. 
 

If the IF-condition in line 3 is not satisfied, PAlg does not change within 
this loop, and the condition (1) is still satisfied at the beginning of the next 
loop t+1. 

If the IF-condition in line 3 is satisfied, PAlg (l1) increases by 1 and PAlg (t) 
decreases by 1 where l1 < t. 

 

Thus the sum ∑ j= 0…s PAlg(j) increases by 1 for l1 ≤ i < s and stays con-
stant otherwise. Hence, condition (1) is still satisfied at the beginning of 
loop t+1. This means that condition (1) is still satisfied at the end of the al-
gorithm. 

 

2. Next is shown that (2) ∀ s ε T:  ∑ j = 0…s PAlg(j) ≤ M: 

Be s ε T: at the beginning, PAlg= 0, ∀ i ε T and hence the sum ∑ i= 0…s 
P(i) is also 0 and condition (2)  is satisfied. 
 

 This sum can only change at the lines 4 and 5, since only those lines change 
PAlg.  

4. PAlg (l1)  := PAlg (l1) + 1; 

5. PAlg (t)  := PAlg (t)   - 1; 

 These statements only increase the sum (2) ∑ i = 0…s PAlg(i) by 1,  

if l1 ≤ s < t. This only happens at a loop t > s, and at most once per tuple 
in the  

List L at time step s, since in that case the tuple (l1,…) must have been 
inserted into the list at loop l1 ≤ s and remained in that list at the end of 
loop s. Since there are at most M elements in the List L at loop s,  the 
sum (2) can increase by 1 at most M times, hence ∑ j = 0…s PAlg(j) ≤ M is 
still satisfied when the algorithm ends. 

From 1 and 2 it follows that the boundary condition is satisfied by the schedule 
PAlg. 
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3.6 Proof of optimality 

Every discharged unit of energy has to be charged at an earlier time step. 
Hence an optimal schedule Opt can be constructed by going through all time 
steps and determining an earlier charging time for each time step. As in our al-
gorithm, we can assume that also for the construction of the optimal plan Opt, 
the best M options for obtaining energy are stored in a list L. 

Now we can easily show that the construction of an optimal plan can be done in 
exactly the same way as by the combinatorial algorithm.  

When a unit of energy is charged by the optimal plan, we can w.l.o.g. also as-
sume that it is the cheapest option to obtain energy in the list L. Otherwise, if 
this unit of energy would not be used by the optimal plan, the plan could be im-
proved by using the cheaper option. This would contradict the optimality. 

As the combinatorial algorithm, the optimal plan will also only charge and dis-
charge a unit of energy, if the price for energy is not higher than the gain for 
discharging. Else, the plan could be improved by simply leaving out this pair of 
charging and discharging, which contradicts the assumption of optimality. 

On the other hand, when Alg plans to charge and to discharge energy (and 
thereby making profit), while the optimal plan does not, this must imply that the 
optimal plan charges the same unit of energy too, but discharges this unit of en-
ergy later (otherwise, the optimal plan could be improved by adding this pair of 
obtaining and discharging energy – which would contradict the optimality). In that 
case, we could w.l.o.g. assume that the optimal algorithm also plans to obtain 
and discharge that unit of energy as the combinatorial algorithm does, and later 
obtains back that unit of energy by removing the discharging from the plan again. 

As we see, we can assume that an optimal plan is constructed in the same way 
as the plan by our combinatorial algorithm. Hence the combinatorial algorithm is 
optimal. 

3.7 Constraints and possible add-ons of the combinatorial 
algorithm 

As said before, the algorithm described in detail is a simplified version, add-ons 
for practical usage are: 

• An initial state i of the battery: it can be included by adding additional time 
steps at the beginning of the time line. By adding s additional i time steps 
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with priceC(t)=0, priceF(t)=0 at the beginning, a schedule can use s free 
units of energy for the schedule. 

• A final state f of the battery: it can be included by adding time steps at the 
end of the time line. By adding f time steps with  priceC(t)=X, priceF(t)=X (X 
sufficiently large) at the end of a schedule, an optimal schedule will (if possi-
ble) charge the battery to f before these additional time steps. 

• Different charging and feeding rates: basically, the list L must be modified to 
contain triples (li, pi, ei), where ei is now the amount of energy which can be 
obtained at time step li at price pi. Instead of having M elements, the list must 
now be truncated to contain at most M units of energy. We therefore do not 
just remove triples from the list, but also reduce the energy contained in the 
last triple. As before, the algorithm obtains the energy from the triples at the 
beginning of the list L, but now this energy may be divided over several tu-
ples. So again, several triples may be removed from the list, or the energy 
contained in those triples may be reduced. 

At this stage only a very simplified model for the battery is included in the de-
scribed algorithm, possible function plug-ins are:  

• Monotonic rising battery state of charge depending on abrasion costs for 
each time step. (e.g.: if the battery contains 5kWh, abrasion cost of XX € for 
each time step incurred) 

• Losses of the battery: the battery loss could depend on the batteries SoC. 
Also possible are losses for each time step, depending on the SoC. For ex-
ample, X% losses per time step at SoC greater Y% and Z% losses at Y% 
and less. 

• Monotonically increasing costs for charging depending on charging power: 
this can be achieved by inserting several small units of energy with different 
charging prices into the list L instead of one.  

3.8 Complexity and time consumption 

The complexity of the combinatorial algorithm in the simple version is linear to 
the required time steps list. In practice, on a 2.5 GHz ATLON 64 4000+ proces-
sor this algorithm consumed just 7 * 10-5s computation time for a 36-hour 
schedule based on quarter hourly time steps. The fast computation time allows 
large simulation runs. For example, the algorithm has been successfully applied 
to evaluate the impacts of a high penetration of Plug-In Vehicles indirectly con-
trolled via variable tariffs on the grid. Also fast calculations of onboard sched-
ules for charging strategies are possible. 
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4 Used battery degradation cost model 

An important prerequisite for the V2G use of batteries depending on variable 
tariffs is the battery degradation. Only when the spread between high and low 
tariffs is large enough to cover the battery degradation costs plus buying elec-
tricity feeding-back is suggestive. The battery degradation process is too com-
plex and theoretically not well enough understood to use a physical battery de-
gradation model in each solver. Therefore, a highly simplified battery degrada-
tion cost model based on the depth of discharge (DoD) was constructed and will 
be used in the fleet test “Flottenversuch Elektromobilität” (see also further on). 
This model is used as a first assumption, as explained before; different ap-
proaches could also be integrated into the optimisation. 

To illustrate the typical battery degradation, Figure 4 shows the cycle life of dif-
ferent battery cells published in [12] and the goal of the U.S. Advanced Battery 
Consortium (USABC) published in [13]1.  

Figure 4:  Battery cycle life dependent on DoD and battery degradation 
trend line 

 
Own calculations based on data in [12] and [13]. For shallow cycles a 7% DoD is used.  The 
battery ageing due to calendar life is not taken into account. 

To estimate the cycle life performance of a currently available battery, a life-
time2 of 2,000 cycles at 80% DoD and 800,000 cycles at 3% DoD is used. This 

 

1  For the USABC trend line, a cycle life of 1,000,000 at DoD of 3% was suggested.  
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performance has been demonstrated for a Li-Ion high energy cell of SAFT and 
seems to be feasible for Li-Ion batteries today (see [14]).  

The following equation is used to estimate cycle life Nlife in dependence of the 
DoD.  

 Nlife = a*DoD^b 

A DoD of 100% is defined as the usable energy of the battery. For a currently 
available Li-Ion battery, parameters (a=1331 and b=-1,825) are used. Repre-
sentative for the USABC goal, the parameters (a=2744,2 and b=-1,682) de-
scribe the cycle life with 5,000 cycles at 80% DoD and 1,000,000 cycles at 3% 
DoD. The equation is used to calculate the cycle life in the usable energy range 
of Li-Ion batteries3. Nevertheless, a degree of uncertainty remains in this highly  
simplified model, since important parameters such as temperature, C- rate, 
specific aspects of different Li–Ion battery chemistries, or battery dimensions 
were not taken into account. Moreover, the battery ageing due to calendar life is 
unaccounted. The discussed model suggests the highest life time for a fully 
charged (100% SoC) battery without cycling. However, considering calendar 
life, a SoC of 100% is the most demanding condition. Furthermore, especially 
for A123 Systems batteries, the dependency of cycle life and DoD seems not to 
be the appropriate approach. Analyses of [15] show that the most important fac-
tor for capacity fade of A123 Systems is the energy processed, and not the DoD 
which is used in the equations. According to the A123 Systems website, a cycle 
life of 7,000 cycles for a capacity fade of 20% is assumed. This results in a life-
time reduction of 0.0029% per cycle4. Peterson concludes that capacity fade 
per normalized Wh processed is 0.0062% for driving and 0.0027% for arbitrage. 
The disparity of the two values is caused by different C-rates of the driving and 
arbitrage cycling.  

4.1 Discharge costs  

To decide if V2G options are profitable, the battery degradation costs per unit 
discharge are required. When the battery is discharged the degradation costs 
are a function cdis (DoDStart, DoDEnd), which depends on the DoD at the start of 

 
2  80% of original capacity. 
3   Different types and specific aspects such as safety of Li-Ion batteries are not considered.   
4  1C/-1C cycling (25°C, 3.6 V, DoD 100%). 
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the discharging (DoDStart), the DoD at the end (DoDEnd). Additional parameters 
of the function are battery-specific parameters, the cost for the battery cBatt and 
the usable energy of the battery EBatt. We now consider the special case of 
regular charging and discharging up to a certain DoD, assuming that the degra-
dation costs are equally distributed over all life cycles of the battery. In that case 
the costs for one cycle, i.e. one discharge from DoDStart= 0 to DoDEnd = DoD 
are the total battery costs divided by the number of cycles: 

cdis (0,DoD)= cBatt / Nlife(DoD) 

The costs for one kWh proceeded illustrated in Figure 5 are:  

cdis, energy (0,DoD)= cBatt / (Nlife(DoD)*DoD*EBatt) 

It follows that under the given assumptions the general degradation costs are:  

cdis (DoDStart , DoDEnd) = cdis (0,DoDEnd)- cdis (0,DoDStart) for DoDEnd > 
DoDStart 

Then, the cost per discharge unit cdis_unit  as a function of the DoD before the 
discharge are: 

   cdis_unit (DoD)  =  cdis (DoD , DoD+1) 

     = cdis (0,DoD+1)  -  cdis (0,DoD) 

    = cBatt / Nlife(DoD+1)  - cBatt / Nlife(DoD) 

Figure 5 illustrates these specified discharge costs as a function of the DoD for 
both earlier described degradation functions with specific investment costs of 
1,000 and 350 € per kWh of usable energy.  
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Figure 5:  Battery degradation costs for a currently available battery (Li-
Ion) and a battery with cycle life given by the USABC goal 

 

For the two cycle life functions, a deep discharge and an investment of 1,000 
€/kWh results in very high discharge costs per kWh. In the USABC scenario 
with low battery costs (350 €/kWh), costs of discharging range between ~0.04 
and 0.13 €/kWh. The average spread between base and peak prices at the 
European Energy Exchange (EEX) market in 2008 was in the range of 0.03 
€/kWh. This relation shows that feeding electricity back into the grid only occurs 
in very limited time frames and in a best case scenario.  

Bringing the focus back again to the A123 Systems cells5 and assuming an in-
vestment of 1,000 and 350 €/kWh, respectively, for the total battery system, the 
costs per kWh discharged would result in 0.143 and 0.05 € respectively. Espe-
cially in the case of California which reveals a higher spread between peak and 
base electricity prices, and for energy systems with a very high penetration of 
volatile generation, the A 123 Systems is very promising for the future. Never-
theless, it remains unclear if the assumed cost reductions can be reached. In 
order to analyze possible effects of V2G, in the goals of the USABC are used in 
this paper as the most reasonable future scenario. The required infrastructural 

 
5  We assume 7,000 cycles for a capacity fade of 20% for the battery system. However, cycle 

life of cells and the systems constructed of several cells can differ strongly. 
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implementation costs for charging equipment and metering also have to be 
considered. 

Integration of the battery degradation in the charge optimisation is only required 
for the bidirectional usage of the batteries (V2G integration). In the combinato-
rial optimisation described earlier, only monotonic rising battery state of charge 
depending on abrasion costs for each time step could be included. In the men-
tioned battery function, however the charge depending on abrasion costs is de-
creasing. Hence, a graph search algorithm is used for all V2G options. 
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5 Graph search algorithm  

In graph theory, the shortest path problem is the problem of finding a path be-
tween two vertices (or nodes) such that the sum of the weights of its constituent 
edges is minimized. From a given initial vertex (node), the graph search algo-
rithm calculates the path with lowest cost between that vertex and every other 
vertex in the graph. For the charge optimisation issue the battery state of 
charge (SoC) at arrival could be used as initial vertex. From this initial vertex to 
every other reachable vertex (SoC at the next time step) in the system, a cost 
value is assigned. Constraints of the passages between different vertices de-
pend on the SoC and other parameters like charging and discharging energy. 
The cost for the passages between the different vertices depends on the battery 
degradation costs, a function of SoC, as shown and the difference between 
time-specific energy costs and feed-in tariffs. For all possible battery states at 
the specific time, vertices were defined. Also for all passages between the verti-
ces the costs were defined. The framework of the specific vertices and the cost-
specified passages between them are called graph. Starting from the initial ver-
tex, different end vertices are possible. In the example also the end vertex is 
more or less fixed. Minimum should be the SoC to reach the desired destination 
of the next trip. With a shortest path algorithm akin to Dijkstra's [16] algorithm, 
the cheapest passage though the graph could be calculated and so the sched-
ule with the best charging/discharging strategy is found.  

5.1 Complexity and time consumption 

The complexity of the graph search algorithm is linear to the number of vertices. 
Therefore, discrete variables which allow the required level of detail, without the 
expansion of the possible vertices, are needed. In practice, on a 2.5 GHz 
ATLON 64 4000+ processor this algorithm consumed around 1s computation 
time for a 36-hour schedule, based on quarter hourly time steps and up to 
40,000 discrete states of the battery. To schedule onboard the charging and 
discharging strategy incl. a model of the battery degradation costs, the graph 
search algorithm is a good choice. For large simulation runs e.g. to evaluate the 
impacts of variable tariffs on the grid, the combinatorial algorithm should be the 
favoured choice. 
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6 Visualisation and applications 

Both algorithms are designed for resource effective embedded systems and 
therefore without visualisation. But for the developing process and also for an 
easier explanation and evaluation of the functions of both algorithms, an input 
interface visualisation is used. Figure 6 shows a screen shot of the Java visuali-
sation for an exemplary schedule. The diagram above shows the assumed vari-
able electricity cost and feed tariff, in the example both curves are related to the 
German reference load profile (SPL H0Winter-Workday). Further assumptions in the 
example are the shaded input parameters at the bottom of the visualisation. In 
the example, the car arrives with a SoC of 10 kWh and 24 hours later it has to 
be fully charged (20 kWh). A one phase grid connection point common in Ger-
many (max. ~3.5 kW) and the cost and cycle life of Li-Ion batteries given by the 
USABC goals are used. The optimised dispatch schedule is illustrated in the 
other diagrams of the Java visualisation applet. The black line in the diagram 
which is shown in the middle of the graph shows the SoC. The green and red 
bars illustrate the amount of energy charged and discharged for each time step. 
At times when the tariffs for drawn energy are low (in the morning between 2 
and 5 o’clock), the battery is charged fully. Also at times when the energy prices 
are below the peak of the feed-in tariff, the battery is charged to feed energy 
back at the times of high feed-in tariffs, around noon or around 8 pm. Energy is 
only fed back if the spread between electricity costs and feed-in tariffs is higher 
than the battery degradation costs. In the third diagram the energy cost and 
benefit for each time step are illustrated. The total amount of the green and yel-
low bars stands for the money which could be earned by feeding energy back. 
The yellow part illustrates the battery degradation cost for which the calculation 
was explained before. The green bar illustrates the profit and the red bar the 
cost for the consumed energy. 
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Figure 6: Visualisation and graphical interface of the optimised battery 

charge dispatch based on the graph search algorithm 

 

6.1 Related project and research 

Within the project “electro-mobility fleet test” (Flottenversuch “Elektromobilität”) 
both algorithms are used. Besides the partners Volkswagen AG and E.ON En-
ergie AG the institutes Fraunhofer ISE and ISI are part of the project which is 
co-financed by the German Federal Ministry for the Environment, Nature Con-
servation and Nuclear Safety BMU [17]. The main task of the fleet test is to 
evaluate the interrelation between volatile renewable energies and the location-
independent demand of plug-in cars. Unlike most fleet tests in the past, this pro-
ject includes grid fitted, controlled charging and discharging. Therefore an intel-
ligent operation management has to be implemented that generates an opti-
mised charge and discharge strategy derived from different factors (grid opera-
tor, infrastructure, user needs, etc.). Also the bi-directional connection of the 
plug-in cars to the energy supply is planned. This implies new prospects by the 
mobile storage within the grid, new requirements of the cars, infrastructure, and 
communication. Currently, no infrastructure to independently bill mobile electri-
cal loads exists. The prospective adaptation of “Smart Metering Systems” could 
be an opportunity to bill mobile electric loads. In the fleet test an onboard device 
to: 
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• communicate bi-directionally with charging station and utility (for authentica-

tion, to transfer the tariffs and load profile, etc.)    

• meter the charged and discharged energy 

• dispatch the energy consumption and optimised V2G applications  

• store required data 

is going to be developed. Depending on the requirements of the cars, the com-
binatorial (only charging) or the graph search algorithm (V2G) is used on the 
embedded computing system of the onboard metering device. 

Both introduced algorithms are developed under the assumption that the final 
charging dispatch strategy is decided decentralised on board the BEV, so the 
required grid interface (charging station) could be relatively simple (see also [6], 
[18] and [19]). In contrast to the introduced concept and fleet test recently 
started, fleet tests in Germany [20] [21] do not realise direct communication be-
tween charging stations and the cars. If the charging schedule is decided off 
board, as is the solution within these fleet tests, the algorithms could be used to 
predict the reaction and energy demand, based on centrally generated signals. 
For both optimisation algorithms, add-ons to consider power and specific costs 
for energy produced and consumed locally (e.g. PV, CHP, etc.) already exist. 
This application could be used for “smart home charging” processes, consider-
ing the local energy situation within the charging schedule.  

A further task done by the combinatorial algorithm is to evaluate the grid im-
pacts of directly and indirectly controlled charging processes. (e.g. see also [5], 
[6]) Tariffs variable in time, power and location could be easily evaluated with 
the tool. It could also be used to develop these tariffs. In Figure 7 the impacts of 
a high marked penetration of Plug-In vehicles and charging indirectly controlled 
by tariffs is illustrated for the local energy utility. The two-step tariff signal links 
the local renewable energy production from wind and solar power with the load 
of the distribution grid in Freiburg. After evaluating the impacts of controlled and 
uncontrolled charging for different types of distribution grids, the impact for 
transportation and the link to the different fossil and renewable energy produc-
ers and decentralised energy producers and consumers will be evaluated. The 
resource-efficient combinatorial algorithm is adequate for all researches with a 
finite calculation capacity like embedded systems in mobile applications or 
mass calculations like reaction of many different Plug-In vehicles and their grid 
impacts.  
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Figure 7. Simulation of a local distribution grid load profile with a high 

penetration of BEV. The BEV Load is based on a three-step 
tariff signal and an onboard charging optimisation by the com-
binatorial algorithm. The exemplarily used tariff signal is only 
theoretical to describe the link by the tariff with the electrical 
load and the renewable energy production 

 

Besides applications for BEV, simple modified versions of both algorithms could 
be and are in use to calculate optimised control schedules for decentralised en-
ergy systems, like virtual power plants. In consideration of the required devel-
opments to integrate distributed generators into distribution grids, the German 
legislator enacted amendments of the German Renewable Energy Sources Act 
(EEG) and Combined Heat and Power Act (KWKG) to improve the efficiency of 
the grid by creating incentives for local consumption of decentrally produced 
energy. This leads to the challenge of optimising local energy systems in a 
manner to cover as much as possible of local electricity demand by own plants. 
For solving these tasks, prognosis and optimisation algorithms are necessary 
and done by algorithms based on the described. For Plug-In Vehicles these 
amendments of both German laws are a first step to profit from a locally opti-
mised charging dispatch depending on local energy production. 
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7 Conclusion 

By successfully launching hybrid technology into the market and through addi-
tional progress in battery development, electric mobility is considered capable of 
being a viable option for a marketable vehicle concept again. Effective grid op-
erations can be assured by synergy effects between the fluctuating energy sup-
ply of renewable energies and flexible load and storage capacity of electric ve-
hicles. To be able to use the advantages of BEVs and realize large-scale opera-
tion of BEVs, charging and discharging has to be controlled and new infrastruc-
tures for communication of the grid and the billing system are necessary. An 
onboard “metering and control device” and variable energy/feed-in tariffs are an 
optional solution to managing charging and discharging. Effective optimisation 
algorithms are required to provide the optimal charging and discharging strate-
gies of the battery system and to analyse the grid impacts. Therefore a combi-
natorial optimisation algorithm was developed, explained, and proved. In future 
the BEVs could be used to serve as energy storage, feeding electricity back into 
the grid when needed (V2G). In this case, battery degradation costs have to be 
considered. Based on the battery state of charge (SoC), common Li-Ion battery 
life cycle assumptions have been used to identify the degradation costs. To im-
plement these battery degradation costs, an additional algorithm based on a 
graph search algorithm was used and customised. In the paper both algorithms 
were explained and compared by performance. On a common PC for a 36-h 
charging schedule the computation time of the algorithm based on graph search 
time is around a second which is around 50 times faster than solved by a com-
mercial solver based on mixed integer linear programming (MILP). For the 
same task solved by the developed combinatorial algorithm the computation 
times last around 10-5 seconds. Research projects, a visualisation and applica-
tions where the different algorithms are used and could be used have been 
shown. Both algorithms could be used to optimise the costs of the charging 
process onboard. Therefore, the influence on the grid of e-mobility is controlla-
ble by providing sufficient, dynamic tariff signals. This can lead to the necessary 
decoupling of driving and charging profiles in order to supply the electric pas-
senger cars with the highest share of sustainable energy as possible without 
generating the necessity of expensive grid expansion or jeopardise the safe 
operation. 
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