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Abstract 

Abstract-This study describes a method for programming a plug-in electric vehi-
cle agent that can be used in power system models and in embedded systems 
implemented in real plug-in electric vehicles. Implementing the software in real-
life applications and in simulation tools enables research with a high degree of 
detail and practical relevance. Agent-based programming, therefore, is an im-
portant tool for investigating the future power system. To demonstrate the plug-
in electric vehicle agent behavior, an optimization algorithm is presented and 
two battery aging methods as well as their effect on V2G operation are ana-
lyzed. Aging costs based on the depth of discharge result in shallow cycles and 
a strong dependency on driving behavior, because the state-of-charge affects 
the discharging process. In contrast, aging costs based on energy throughput 
calculations results in deeper cycles and V2G operation which is less depend-
ent on driving behavior. 
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1 Introduction 

Pure battery vehicles and plug-in hybrid vehicles are now available commercial-
ly to private consumers. Even though their mass market diffusion will certainly 
take a significant time, questions should be asked now about the challenges 
and chances emerging due to electric load and storage becoming available in 
the electricity system. To standardize communication, the ISO/IEC 15118 is 
currently being developed, a protocol that defines the information exchange be-
tween the charging point and the vehicle. This protocol covers the communica-
tion of price signals to the vehicle, but not the exchange of vehicle-specific data. 
Therefore it seems likely that smart charging schedules will be generated and 
optimized by algorithms used in the vehicle and not by a central operator. To 
optimize the charging and discharging schedule, information on the battery 
state and consumer needs is required that is only available within the vehicle. 
Therefore, a tariff-based demand response with vehicle-based optimization of 
the charging and discharging schedule seems to be a promising approach for 
realizing V2G applications. In this case relevant information to generate a smart 
charging schedule can remain in the vehicle and the communication of user- or 
battery-specific data is not necessary.  

Several studies have addressed smart grid agents and tariff-based demand re-
sponse. [1] presents an agent for a residential cooling system that receives a 
price signal, a 24 h rolling average price and the standard deviation of the price 
to generate a minimal cost operation schedule under temperature constraints. 
[2] defines control algorithms for storage, process shifting and demand reduc-
tion appliances. Autonomous plug- in electric vehicles (PEVs) frequency and 
voltage control is analyzed in [3]. The theory and implementation of multi-agent 
systems are discussed in [4], [5] and [6]. [7] and [8] present a multi-agent coor-
dination concept that is implemented by [9] in a field test using different demand 
response devices. Based on simulations, [10] and [11] discuss the design of 
controls and incentives in smart grids. Design examples of indirect tariff-based 
control mechanisms including PEVs are presented for congestion pricing [12], 
[13] and managing a distributed grid energy hub [14]. A specific distributed op-
timization strategy for PEVs is defined in [15] and [16].  

Similar to [15], the work presented here defines an optimization strategy for 
PEVs but also includes battery aging costs based on depth of discharge requir-
ing nonlinear optimization. This optimization strategy was then implemented in 



2 Smart Grid Agent: Plug-In Electric Vehicle 

Volkswagen vehicles. Therefore, the method allows a realistic estimate of 
PEVs’ operation controlled by ISO/IEC 15118 which is highly relevant for re-
search. Additionally, a method to simulate driving behavior is included which 
provides necessary input parameters such as the vehicles` standing time. In-
cluding driving behavior allows the method to be used in power system models 
instead of deterministic driving data which is often not available. 

The paper is structured as follows. Section 2 discusses the applied tariff-based 
control method. Section 3 then gives a detailed description of the PEVs’ agent, 
including driving behavior (sub Section 3.1), battery aging (sub Section 3.2) and 
the optimization algorithm (sub Section 3.3). Finally, Section 4 describes the 
results of applying the PEVs’ agent with different methods to calculate discharg-
ing costs and Section 5 concludes. 

2 Method  

The idea of agent-based simulation combines game theory, social sciences and 
software engineering. An agent is defined as: “.... a computer system that is 
situated in some environment, and that is capable of autonomous action in this 
environment in order to meet its design objectives.” [19]. Similar to a feedback 
loop in control theory, this includes a perception and action functionality. The 
perception function is used to observe the environment. In the context of power 
systems this could be a transformer station observing active and reactive power 
flows in the connected grid, or a distributed device such as a PEV observing the 
drivers’ needs, battery state and incentives from the smart grid. The action func-
tion for PEVs would be charging or feeding electricity back to the grid. Providing 
reactive power and grid monitoring are other possible actions. To schedule the 
action of the agent, an optimization algorithm is applied here, considering all 
constraints on driving behavior, battery restrictions and consumer preferences 
(see Section 3).  

The agent presented here was applied in the field trial “Flottenversuch Elektro-
mobilität” by integrating an embedded system into a Volkswagen Golf Variant 
“TwinDrive” PEV [17]. Real-time prices can then be sent to the vehicles and the 
embedded PEVs’ agent via the charging infrastructure.  

Beside the functionality of agents, the management of the agents is also an im-
portant issue. The objective function of a single agent is not necessarily consis-
tent with the objective of the grid or power system. For example, assuming that 
several devices optimize their electricity consumption according to one price 



Smart Grid Agent: Plug-In Electric Vehicle 3 

 

signal would result in a high simultaneousness of electricity consumption (see 
[20] and [21]). A mechanism design [22] or control mechanism is necessary to 
avoid this unwanted result.  

A mechanism design for the presented agent was implemented in the electricity 
market and system model PowerACE [23]. PowerACE is a marginal cost-based 
simulation model focusing on electricity markets and electricity generation from 
renewable energy sources. To control many PEVs’ agents acting in the 
PowerACE model, a two-stage mechanism design based on dynamic pricing is 
used [18]. In the first stage, a price forecast p(t)pool of market clearing prices is 
applied for a specific pool of PEVs. In the second stage, a variable grid fee 
p(t)gridfee is added. Applying this method of individual real-time pricing results in 
slightly different price signals for every agent. The differences are detected by 
the optimization algorithm and result in an optimal residual load valley filling. 
From a consumer perspective, differences are very small, but still result in a 
non-equal trading of electricity consumers which is not permitted under the cur-
rent legal conditions. 

Other applications of the mechanism design are also possible such as optimiz-
ing a micro-grid or balancing the generation forecast errors of fluctuating gen-
eration sources. However, the control of such agents is not considered in this 
study, which only focuses on the PEVs’ software agent. 

3 Plug-in electric vehicle agent 

Besides receiving a price or control signal, the PEVs’ agent consists of two ad-
ditional perception functionalities necessary to make the charging or V2G deci-
sion as given in Figure 3-1.  

First, information about the driving behavior of the vehicle is required. The driv-
ing behavior defines the standing time and the objective status of the state-of-
charge. In practice, the information on user preferences is transmitted via a user 
interface in the vehicle. After each trip, users can define the time to the next trip 
(grid management time) and the state of charge (soc) necessary. In the pre-
sented simulation model, driving behavior data are generated using a probabil-
ity-based approach and are known in advance. This implies that users perfectly 
plan their driving behavior. The simulation of the driving behavior is explained in 
Section 3.1. 
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Figure 3-1: Overview of Plug-In Electric Vehicle Agent 

Second, PEVs providing V2G must consider discharging costs. The discharging 
costs consist of the efficiency or losses due to a charging and discharging cycle 
and battery degradation. The main focus here is on the battery degradation 
costs, but the approach can also include profit contribution or parameters for 
strategic bidding. Two approaches are applied to calculate the battery degrada-
tion costs: an energy throughput and a depth of discharge method (see  
Section 3.2). 

Beside the perception functions, an optimization algorithm is necessary to de-
cide on the charging or discharging schedule. To calculate the operation sched-
ule, a graph search algorithm is used allowing nonlinear battery degradation, 
which is explained in Section 3.3. 

 

3.1 Driving behavior 

Driving behavior is modeled using the probabilities introduced in [20] and given 
for different mobility surveys in [18]. The flow diagram in Figure 3-2 shows the 
stochastic process to generate trips. 

The driving behavior simulation starts before the energy-related simulation and 
the next trip is already known when returning from the current trip (i.e. perfect 
foresight).  
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Figure 3-2: Stochastic simulation process of mobility behavior 

At tstart the beginning of the simulation process for a single device n a first ran-
dom value is used to determine if the vehicle starts a trip on the specific day 
(Probtravel) (see step 2 in Figure 3-2). If this is not the case, the simulation con-
tinues with the next vehicle. If the vehicle starts a trip m, the probability to start a 
trip Prostart multiplied by the average trips per day over all time steps is verified 
(step 4 in Figure 3-2).  

The values of randomt,1-3 (see Figure 3-2) are renewed after each time step t. 
The value of random1 is set by the Java random function before the loop over 
all time steps of the day.  

For the start of a trip, probabilities for the range r (Probrange) and location  
l (Probloc) are retrieved and assigned to the trip (steps 5 and 6 in Figure 3-2). To 
distinguish the distance km to be driven within the range classification k, a ran-
dom value is subtracted by k. The driving time of the trip m, tdrive,m is calculated 
according to the linear function [18]  

 drive, mt ( ) 0.7211 k    5m k = +                     (1) 
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and added to the time steps of the counting variable (step 7 in Figure 3-2) of the 
loop over all time steps. If no start time is assigned within T, the number of the 
trips is 1 and the start probability is retrieved until a start time is determined. 

To calculate the operation schedule of the PEV agent, the following mobility 
parameters are necessary: 

• The energy used during the trip to calculate the state of charge soc after 
the current trip: 

  
, ,

km kmsoc socn t t n tdrive Ebat

η⋅
= −+

                  (2) 

Here, ηkm is the efficiency of converting electrical into mechanical energy. 

• The start time of the current tstart,m and next trip tstart,m+1 as well as the driv-
ing time tdrive,m to define the grid management time Δtm (period of optimi-
zation): 

  
( ) ( ), 1 , ,t m t t tstart m start m drive m∆ = − −+                 (3) 

• The energy necessary for the next trip to calculate the objective status of 
the soc at the end of the optimization time period.  

  
1

,
km kmsocn t Ebat

η⋅+=∆
                     (4) 

Alternatively, an objective soc of 100 % can be used. 

 
3.2 Battery degradation 

Information about the wear of vehicle batteries is needed as a decision-making 
aid for feeding back electricity into the grid. In this chapter, battery degradation 
is discussed with regard to finding a simplified approach to model battery wear. 
In the following section, lithium-ion batteries are addressed in general without 
distinguishing the broad variety of lithium-ion battery chemistries and their spe-
cific characteristics. 

Battery aging refers to irreversible physical and chemical effects that reduce 
battery performance. The end-of-life of automotive batteries is defined as a 
nominal capacity fade of 80 % compared to the initial rated capacity [24]. The 
capacity fade of lithium batteries is mainly influenced by the following stress 
factors [25], [26] and [27]:  
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• Temperature  

• Cycles  

• State-of-charge swing   

• C-rate   

• Waiting periods 

• Soc in waiting periods. 

The calendar life of batteries is mostly determined by thermal aging. An in-
crease in temperature augments the relative cell resistance over time and re-
duces the lifetime [28]. The relevance of temperature for V2G is reduced if bat-
tery pre-cooling or pre-heating is assumed before beginning a V2G cycle. If 
conditions are too harsh, cycling could be restricted. During discharging, it is 
assumed that the cooling system is able to keep the temperature within the de-
fined levels. Hence, temperature-related calendar life is only an issue if no grid 
connection is available and does not apply to cycling under conditions that can 
be defined to limit battery aging. 

The c-rate or discharging and charging power affects age-ing and influences 
cell temperature. For example, [29] defines aging factors for specific c-rates. In 
terms of V2G cycles, the c-rate is very low compared to driving cycles. The rat-
ed power of a PEV motor ranges from 30 to 100 kW with correspondingly higher 
peak power, whereas the power used in a V2G cycle is in the range of 3 to 20 
kW at a standard home grid connection. In terms of LiFe-PO4 cell chemistry, 
[29] found that the capacity fading factor for driving (2.85 C-rate) is 2.2 times 
higher than for V2G (0.5 C-rate). 

The cycle life related to the depth-of-discharge (DoD) or soc-swing is described 
in various publications (e.g. [30] and [31] and given by battery manufacturers for 
batteries under test conditions. Most experts describe this relation as one of the 
main factors for cycle-based battery aging, even if the influence of this factor 
seems to be rather low for LiFePO4-based chemistries [29]. 

The influence of the stress factors on battery aging varies for different lithium-
based battery chemistries. Furthermore, cell dimensions and system design 
play an important role for the lifetime [26]. Modeling physical and chemical pro-
cesses yields the most accurate information about battery aging but also has 
the highest complexity (e.g. [27]). Laboratory experiments are necessary to 
characterize each specific battery chemistry. This was not feasible for this re-
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search study and algorithms are too complex to run in a vehicle-embedded sys-
tem.  

Weighted energy throughput or Ah models are less com-plex and can be used 
as an accurate heuristic approach to determine battery aging [27]. Detailed in-
formation about the effects of different stress factors is required. Because lithi-
um-based battery chemistries are undergoing rapid development, the relevant 
information is not readily available and it is still unclear which will be the domi-
nant materials used in the future, so it is hard to define these factors. A related 
approach which simply takes one stress factor into account is the event-
oriented aging model or Wöhler curve [27].  

This approach is used to determine the number of cycles of a battery as a func-
tion of the depth-of-discharge until the end of its lifetime. For V2G cycles where 
it is possible to define cycling conditions (temperature, c-rate, waiting periods 
etc.), cycle life related to the depth-of-discharge seems to be adequate for 
modeling V2G in the electricity sector. In addition, this approach can be adapted 
to model degradation costs for future scenarios considering batteries with a bet-
ter cycle life performance. To account for a lower influence of the DoD, a model 
based on the energy throughput with parameters published in [29] is also used 
and compared to the common DoD functions. 

3.2.1 Model based on the depth-of-discharge  

According to [32] and [33], battery degradation is influ-enced by the depth-of-
discharge (see Figure 3-3). The cycle life Ncycle dependent on the soc-swing is 
referred to as the depth-of-discharge DoD and can be described by Eq. 5.  

 
bN a DoDcycle = ⋅                        (5) 

For a currently available Li-ion battery, parameters aSaft =1331 and bSaft =-1.825 
are used. The parameters result from a trend line drawn from data given by [33] 
for a high energy cell manufactured by the company Saft. In general, the per-
formance of a single cell is better than the entire battery system because of 
non-uniform degradation. The cell performance is simplified here. The U.S. Ad-
vanced Battery Consortium (USABC) goal is the basis for estimating the degra-
dation of future battery systems [34]. In this case the parameters result in 
aUSABC=2744 and bUSABC=-1.665. Here, a very optimistic 2030 scenario is as-
sumed with the parameters aScenario2030=4000 and bScenario2030=-1.632. Figure 3-3 
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summarizes the data used and shows the performance of a nickel-metal hy-
dride (NiMH) battery and manufacturer values as a reference. 

 

Figure 3-3: Battery cycle life dependent on the depth-of-discharge 

Source: Own calculation using data from U.S. Advanced Battery Consortium (USABC) goal trend line [24]. 
From [29] for (DoD 70 %=5,000 cycles and DoD 3 %=1,000,000 cycles); Scenario 2030 own assumptions; 
NiMH function cycles=1515 DoD-0.65 [32]; A123 System according to [29]; other cycle life data from [33]. 

The discussed model indicates the highest lifetime for a fully charged (100 % 
soc) battery without cycling. However, when considering calendar life, a soc of 
100 % is the most demanding condition. This contradiction indicates a 
weakness of the model. 

3.2.2 Model based on energy throughput 

Cycle life and DoD do not seem to be appropriate approaches, especially for 
A123 Systems’ batteries. Analyses in [29] show that the most important factor 
for capacity fade of A123 Systems is the energy processed and not the DoD, 
which is used in the equations above. According to the A123 Systems website, 
a cycle life of 7,000 cycles for a capacity fade of 20 % is assumed. This results 
in a lifetime reduction of 0.0029 percent points per cycle. [29] conclude that ca-
pacity fade per normalized Wh processed is 0.0062 percent points (maximum 
2.85 C-rate) for driving and 0.0027 percent points (0.5 C-rate) for arbitrage. The 
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disparity of the two values is caused by different C-rates for driving and for arbi-
trage cycling. 

3.2.3 Discharge costs 

To decide whether V2G options are profitable, the battery degradation costs per 
unit discharge are required. When the battery is discharged, the degradation 
costs are a function cdis (DoDstart, DoDend), which depends on the DoD at the 
start of the discharging (DoDstart) and the DoD at the end (DoDend). Additional 
parameters of the function are battery-specific parameters, the cost for the bat-
tery Cbat and the usable energy of the battery Ebat. The special case of regular 
charging and discharging up to a certain DoD is considered here, assuming that 
the degradation costs are equally distributed over all life cycles of the battery. In 
this case, the costs for one cycle, i.e. one discharge from DoDstart= 0 to DoDend 
= DoD, represent the total battery costs divided by the number of cycles. 

 
(0, )

( )
bat

dis
cycle

C
c DoD

N DoD
=

                   (6) 

The costs for one processed kWh illustrated in Figure 3-3 are given by Eq. 7.  

 
, (0, )

( )
bat bat

dis energy
cycle

C DoD E
c DoD

N DoD
⋅ ⋅

=
                 (7) 

It follows that the general degradation costs are:  

( , ) (0, ) (0, )dis start end dis end dis startc DoD DoD c DoD c DoD= −       

for end startDoD DoD>                       (8) 

Then, the cost per discharge unit cdis_unit as a function of the DoD before the 
discharge is: 

 , ( ) ( , 1%)dis unit disc DoD c DoD DoD= +                 (9) 

  (0, 1%) (0, )dis disc DoD c DoD= + −      ( 1%) ( )
bat bat

cycle cycle

C C
N DoD N DoD

= −
+  

Figure 3-4 illustrates these specified discharge costs as a function of the DoD 
for the degradation functions described above, with specific investment costs of 
€ 247 per kWh of usable energy. 

 



Smart Grid Agent: Plug-In Electric Vehicle 11 

 

 

Figure 3-4:  Battery degradation costs 

Note: Investment 247 €/kWh of the usable energy for the battery system; costs caused by electricity losses 
due to V2G efficiencies are not included. 

The cost calculation per energy unit discharged illustrates the necessary spread 
between the base price and the peak price for feeding electricity back into the 
grid. With the model based on the depth-of-discharge, the cost function rises with 
increasing DoD rates. For USABC and scenario 2030 assumptions, the costs per 
kWh are between 2 and 9 ct. The model based on the energy processed using 
the A123 battery performance results in constant costs of about 4 ct per kWh. 
The costs for a full cycle with the Saft cell are about 18 ct per kWh. 

3.3 Optimization 

The shortest path algorithm approach is used to find the optimal charging dn,t 

and discharging sn,t times for the operation schedule w(0-T) of a PEV n within the 
grid management time Δtm [35]. Compared to a standard solver, this method 
allows a significant reduction in simulation time and high flexibility to integrate 
non-linear battery degradation costs [16, 17]. The implementation of the algo-
rithm is explained below in a simplified example with the following boundary 
conditions. 
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(1) State-of-charge: soct=0= 80%; soct=4= 100% 

(2) Increment of the storage: Δsoc = 10% 

(3) Grid connection power: P = 4kW, 1 kWh equals Δsoc = 10% 

(4) Optimization time period: Δtm = 4 

(5) Charging efficiency: ηcharge =100 % 

 

Define graph: For the specific problem, a graph Z is defined. Z(Δtm; Ebat) con-
sists of a set of finite vertices, in this case Δtm with time steps t, and a set of fi-
nite edges given by the usable energy of the battery. For the vehicle embedded 
application of the algorithm, Δtm is quarter-hourly resolved and depends on the 
standing time of the vehicle provided by the vehicle user. The battery state of 
charge is resolved in 0.25 kWh increments as an element of Ebat (usable battery 
storage 10 kWh). In the example, the optimization time is 4 time steps and the 
soc is divided into 10 increments (see Figure 3-5). 

 

Weight edges: For all points in the graph Z(Δtm; Ebat), the path to reach these 
points is assigned to the cost function:     

-10 : 0t tif soc c c∆ = = +                      (10) 

, -10 : t n t n tif soc c p d t c∆ > = ⋅ ⋅ +  

, , -10 : ( )t n t n t dis tif soc c p s t c soc c∆ < = − ⋅ ⋅ + ∆ +  

The path with non-negative minimum costs to reach a point in Z(Δtm; Ebat) is 
memorized. In the example, no discharging and a charging efficiency of 100% is 
assumed. Graph Z(1,2,3,4;80%,90%,100%) consists of all possible charging 
states over the optimization period. The electricity price pn,t and the calculated 
charging costs ct for all paths to reach the final state are given in Tab 1. 
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Table 2-1:  Overview of the renewable energy input data Example for the 

costs of all possible paths to reach the final state-of-charge 

  Time Steps 
Path 1 2 3 4 

1 0.22 € 0.37 € 0.37 € 0.37 € 
2 0.22 € 0.22 € 0.36 € 0.36 € 
3 0.22 € 0.22 € 0.22 € 0.47 € 
4 0.00 € 0.15 € 0.29 € 0.29 € 
5 0.00 € 0.15 € 0.15 € 0.40 € 
6 0.00 € 0.00 € 0.14 € 0.39 € 

Tariff (€/kWh) 0.22 0.15 0.14 0.25 

 

Find shortest paths: After all the minimized costs have been calculated, the 
path or charging and discharging schedule which has the lowest costs to reach 
the final state-of-charge can be selected from the memorized values. For the 
presented example, paths 3 and 4 are shown in Figure 3-5. Here, path 4 pro-
vides the minimal charging costs to reach the final state-of-charge. 

The optimization algorithm is called after each trip. Starting values are the actu-
al socn,t after the trip, the socn,Δt to achieve and the time Δtm to achieve the soc. 
For details on graph theory and shortest-path algorithms, see [36]. 

 

Figure 3-5:  Examples of the path to reach the final state-of-charge 

Note: The bubble size and the values represent the charging costs ct. 
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4 Results 

The result section focuses on how agent behavior differs depending on the 
methods used to calculate the battery degradation costs. Section 3.2 introduced 
two methods to calculate the discharging costs caused by battery degradation: 
discharging costs based on the energy processed and discharging costs based 
on the depth-of-discharge. Each method results in different agents’ operation 
and V2G charging strategies, respectively. To compare the differences, a simu-
lation was carried out with an agent using the method based on depth-of-
discharge (DoD-agent) and another with an agent using the method based on 
energy throughput (Ah-agent). The following boundary conditions were applied 
for both agents: The simulation period is one week with a quarter-hourly time 
resolution. The tariff is based on our own assumptions and follows a typical day-
and-night profile with a mid price period during the day, e.g. triggered by a high 
photovoltaic supply. The highest price spread between peak (during morning 
and evening hours) and base loads (during the night hours) is 8 ct/kWh. The 
tariff is designed to compare charging and discharging behavior. Therefore, the 
same tariff is used for all simulation days. For the case study, the following driv-
ing behavior is assumed. During the two first days (Sat and Sun) of the simula-
tion, no driving is assumed. Afterwards, two daily 30 km trips, one in the morn-
ing (08:15) and one in the afternoon (16:45) are assumed. The energy use per 
trip is 6.3 kWh and the trip duration is 30 minutes or 2 time steps. The electricity 
tariff and the driving behavior used are shown in Figure 4-1. 

 

Figure 4-1:  Electricity tariff and driving behavior 
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The usable storage of the agents’ battery is 12 kWh. The discharging efficiency 
is 94 % and discharging cost parameters are a= 7000, b= -1 for the Ah-agent 
and a= 4000, b= -1.632 for the DoD-agent. The grid connection power is 4 kW, 
which allows a maximum charging energy of 1 kWh (8.33 % of soc) per time 
step. The optimization time period lies between the actual and the next trip and 
the beginning of the day to the next trip, respectively. The soc to be reached 
before a trip is set to 100 %.  

The results of the one-week simulation are presented in Figure 4-2. During the 
first two days, both agents operate like a stationary storage device. The DoD-
agent (upper part of Figure 4-2) uses the soc range of the battery only partly, 
whereas the Ah- agent uses the total soc range. In addition, a recharging of the 
DoD-agent can be observed. The recharging reduces the discharging costs for 
the next discharging cycle.  

Including the driving behavior from Mon-Fri changes the V2G operation. Dis-
charging during the day is no longer observed because the optimization period 
is only between the two trips and here the assumed tariff does not provide a 
period with the high and low prices necessary for a discharging cycle. After the 
second trip of the day, both agents start discharging. The cycle conducted by 
the DoD-agent again uses only a minimal soc of 39 % (4.7 kWh). In the case 
constructed here, the minimal soc of the agent used in a V2G cycle is constant 
because the price spread of the tariff is the same for all simulation days. The 
energy discharged in both cases is affected by driving behavior, but this effect is 
strongly enhanced when using the DoD-method. 
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Figure 4-2:  Operation behavior of agents 

For a real vehicle or more realistic V2G power system analyses, the discussed 
effects of battery aging costs become far more complex. More realistic driving 
behavior with changing trip ranges and start times results in very different soc 
conditions and optimization time periods when returning from a trip. Further-
more, volatile electricity market prices with changing prices levels strongly influ-
ence the minimal soc applied of the DoD-agent.1 Therefore, realistic discharging 
cost calculations should be included in V2G applications. The here discussed 
agents and the presented optimization algorithm provide the basis to implement 
different aging costs in simulation models as well as in real world V2G applica-
tions. 

 

1  A detailed analysis representing results for a system analysis of the German electricity 
market using the introduced agents is presented in [18]. 
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5 Conclusions 

This paper presented a method to simulate PEVs in electricity system models 
which considers individual driving behavior and battery discharging costs. The 
agent-based approach used also allows the same method to be used in vehicle 
embedded systems. This made it possible to test smart grid software applica-
tions in a simulation environment and investigate the effects of smart grid appli-
cations on the power system and the electricity market. It was also possible to 
use the introduced simulation model to analyze the value of a specific smart 
grid application and interrelations with other applications. This proves to be a 
main advantage of agent-based simulation, which permits a customized ap-
proach and can solve a complex problem while including control algorithms im-
plemented in real smart grid applications. 
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