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Abstract

The vehicle distances travelled by individual users can very strongly
between different days. This is particularly problematic for electric vehi-
cles since trips larger than the electric range clearly reduce the vehicle’s
utility. Here we estimate the number of days with driving distance larger
than a given threshold for individual users based on their observed driv-
ing behaviour. The general formalism is developed and estimates for the
main observable and standard errors are derived based on the assump-
tion of individual log-normal distributed daily vehicle kilometres travelled.
Numerical simulations of driving profiles demonstrate the validity and
accuracy of the analytical results.
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1 Introduction

Electric vehicles (EVs) charged with renewable electricity are a possible way of
reducing green house gas emissions from the transport sector without sacrifice
of individual car-based mobility [1, 2]. But the limited electric driving range of
electric vehicles is a major hurdle for many consumers. Given a certain range, it
is natural to ask what share of users can cover all their trips in one day. However,
the underlying data is often cross-sectional with many users but only one or very
few days of observation per user. For realistic estimates of the required range for
EVs, the frequency of long-distance trips for each individual user is needed and
does not necessarily coincide with that of many users. First results include the
frequency of long-distance trips of a limited sample over longer time periods [3, 4],
but in most cases the observed driving period is rather short, between one day
and a few weeks. Furthermore, a general framework to measure and compare
the occurrence of long-distance trips for many individual users is still lacking.

The statistical distribution of daily vehicle kilometres (VKT) travelled with
applications to EVs has drawn attention in the literature and found new stimulus
by the market introduction of EVs and GPS based measurements [3, 4, 5, 6, 8, 7].
However, the analysis of the distribution of individual users with long observation
periods is still a young field [5, p. 218] and several distributions have been
proposed. There seems to be overall agreement that both individual and cross-
sectional VKT distributions are peaked and right skewed. Greene [3] and Lin
et al. [6] discuss three distributions that have the aforementioned shape: the
Weibull, log-normal and Gamma distribution. That analyse two data sets and
argue that the Gamma distribution is most suitable [3, 6]. However, Blum [7]
compares data from one year of driving in Canada of 76 vehicles and concludes
that the log-normal distribution provides the best fit both for the most drivers
and for the largest number of total trips. This is consistent with the the log-
normal distribution as best fit to cross-sectional daily VKT [12]. Furthermore,
the log-normal has the advantage of simplicity in analytical calculations compared
to the gamma distribution. So far, the numerical results on the best fitting two-
parameter distribution for daily VKT is not conclusive, but in the following, we
will use log-normal distribution to describe the distribution of individual daily
VKT.

The aim of the present paper is to develop a methodology for assessing the
frequency of long-distance trips for individual users extrapolated from a limited
observation period. The method is based on an assumed probability distribution
for individual daily driving distances. We use a log-normal distribution but many
results are more general. The outline is as follows. The formalism and theoret-
ical results are presented in section 2, they are illustrated by and compared to
numerical results in section 3, followed by a summary in section 4.
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2 Derivation of Estimates

2.1 Days per Year Requiring Adaptation

Let us assume that the daily driving distances r of an individual user i are log-
normal distributed, i.e.

fµiηi(r) =
1

r
√
2πηi

exp

[
−
(
ln r − µi√

2ηi

)2
]
. (1)

We want to calculate the number of days D(L) per year on which the driving
distance r is larger than a threshold L. In other words, D(L) are the number of
days per year that would require adaptation from a BEV user. This approach can
then be applied to each user i with his µi and ηi individually, but the derivation
is of course general and we will therefore suppress the index i in the following.

If we measure the daily driving distances rl over l = 1, . . . , n days out of N
total days of observation, we can estimate the parameters µ and η of the indi-
vidual user’s driving distribution from the sample mean M and sample variance
S as follows (estimates for the underlying parameters are denoted by hats ˆ and
their numerical values by latin letters, see table 1 for an overview)

µ̂ = M ≡ 1

n

n∑
l=1

ln rl and η̂2 = S2 ≡ 1

n− 1

n∑
l=1

(ln rl − µ̂)2. (2)

Alternatively, one could use m = 1
n

∑
l rl and v = 1

n−1

∑
l(rl − m)2 to obtain

µ̂ = ln(m2/
√
v +m2) and η̂ =

√
ln(1 + v/m2) (see [9, 10] for a discussion and

comparison).
The probability Pr(L > r) for driving a trip long than L is then given by

Pr(L > r) =

∫ ∞

L

fµ η(r)dr = 1−
∫ L

0

fµ η(r)dr = 1− Fµ η(L) (3)

where Fµη(x) = 1
2

[
1 + erf

(
lnx−µ

η
√
2

)]
≈

[
1 + ( e

µ

x
)π/(η

√
3)
]−1

is the cumulative

distribution function (cdf) of the log-normal distribution.
If the user has been driving on n days out of the total N days of observation,

we estimate the fraction α of days the user is driving by α̂ = a = n/N and obtain
the number of days D per year with a daily driving of more than L kilometres as

D(L) = 365αPr(L > r) = 365 a (1− Fµη(L))

= 365 a
[
1
2
− erf

(
lnL−µ

η
√
2

)]
≈ 365 a

1 + ( L
eµ
)π/(η

√
3)
. (4)
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This is the desired result. Based on a finite number of driving and observation
days, one estimates the number of days D(L) with vehicle kilometres travelled
larger than a given threshold L. Furthermore, the general dependence is given
by D(L) = 365 a/(1 + c1L

c2) with user dependent constants c1 = e−µc2 , c2 =
π/(η

√
3). This is clearly seen in the numerical results of figure 1 below.

One could, of course, simply estimate this same quantity D(L) by multiplying
the fraction of days d/N for which rl > L by 365, but this estimate changes
abruptly with slight changes in L or a few more driving days. Note that the
first line of eq. (4) is independent of the assumed distribution function and holds
for the Gamma distribution as well. For example, if the measured vehicle was
observed for 14 days, moved on eleven days and drove more than 150 km on two
days, one would estimate D ≈ 365 · 11/14 · 2/11 ≈ 52. For a vehicle with the
same characteristics but three out of eleven days with rl > 150 km one obtains
the 50% higher D ≈ 78. This reasoning ignores the information given by all
other driving days and would lead to a simple step function in figure 1 below.
The result in eq. (4) has the advantage of being a continuous estimate in L
despite the limited observation time and uses the information given by all other
driving days, too. Of course, the assumption of a log-normal distribution has to
be made and its parameters have to be estimated from a finite sample. However,
standard statistical methods are available for this (see next section).

2.2 Standard Error Estimate

Since we do not know α, µ and η, they have to be estimated from the sample,
i.e. from each user’s individual driving profile rl, as α̂, µ̂, and η̂. Using eq. (4),
one obtains an estimate for D̂(L). Furthermore, an estimate of the standard
errors associated with these estimate is helpful to understand the precision of
(and confidence intervals for) the estimated number of days per year requiring
adaptation. Assuming small standard errors and independence of the variations,
i.e. cov(µ, η) = 0 = cov(µ, α), we can propagate the errors [11] to obtain

σ̂2
D̂
=

(
∂D

∂α

)2

σ̂2
α̂ +

(
∂D

∂µ

)2

σ̂2
µ̂ +

(
∂D

∂η

)2

σ̂2
η̂. (5)

The partial derivatives are obtained straightforwardly

∂D

∂α
= D/α = 365 · (1− Fµ,η(L))

∂D

∂µ
= 365 aL · fµη(L)

∂D

∂η
= 365 aL · fµη(L)

(
lnL− µ

η

)
.
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Parameter Estimator variance estimator

driving day fraction α α̂ = a = n/N σ̂2
α̂ = a(1− a)/N

scale µ µ̂ = M σ̂2
µ̂ = S2/n

shape η η̂ = S σ̂2
η̂ = S2/(2n)

Table 1: Overview of parameter estimators and standard error estimators. We use
the sample mean M = 1

n

∑
l ln rl the sample variance S2 = 1

n−1

∑
l(ln rl−M)2.

The number of days observed is given by N and the number of days on which
the vehicle has been driven is n ≤ N .

The standard error for the number of days requiring adaptation thus reads

σ̂2
D̂
=

3652α

N

[
(1− Fµη)

2(1− α) + (LfµηS)
2

(
1 +

lnL− µ√
2S

)]
. (6)

The half width of a confidence interval around D(L) with confidence level τ is
then approximately given by z1−τ/2 ·σ̂D̂ ∝ 1/

√
N with relatively slow convergence

as the square root of the observation period N .

2.3 Annual Vehicle Kilometres Travelled

In a similar fashion, one can use the average daily driving distance r̄ = 1
n

∑
l rl =

exp[µ + η2/2] to estimate the annual vehicle kilometres travelled (VKT) R =
365α r̄ = 365α exp[µ + η2/2] and its error. Performing similar steps as above
we obtain

σ̂2
R̂

=

(
∂R

∂α

)2

σ̂2
α̂ +

(
∂R

∂µ

)2

σ̂2
µ̂ +

(
∂R

∂η

)2

σ̂2
η̂

=
R2

aN

(
1− a+ S2 + S4/2

)
. (7)

Accordingly, the relative error reads σ̂R̂/R = 1√
aN

(1− a+ S2 + S4/2)
1/2 ∝

1√
N
. As before, the convergence is quite slow and very long observation period

are required if high precision is aimed at.
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3 Numerical Results

3.1 Days per Year Requiring Adaptation

We performed a Monte Carlo simulation to assess the quality of our estimates.
Figure 1 shows the results of 1,000 runs with daily VKT generated from a log-
normal distribution with µ = 3.43 and η = 1.20 for the ’average’ German
driver [12]. The observation period is N = 14 days and the number of days with
driving n is drawn from a binomial distribution in each run with α = 5/7. For
each randomly generated driving profile, the estimated number of days requiring
adaptation has been estimated according to eq. (4). Since the driving profiles
are randomly generated, many different number of days are estimated. Figure 1
shows the mean and median as well as the upper and lower quartiles of the
distribution of estimated days D. Also shown is the ”real” number of days as
calculated with the correct values µ = 3.43, η = 1.20 and α = 5/7.
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Figure 1: Monte Carlo simulation for the estimated number of days per year
requiring adaption for different electric driving ranges.

Similar to the simulation described above, we generated 1000 driving profiles
from fixed numerical parameter with one to 52 weeks of observation. Figure 2
shows the distribution of the estimated number of days D from one week of
observation and from a whole year of observation. The distribution for a longer
observation period is clearly much more peaked since much more daily driving
distances are contained in the simulated data and a much better estimate of
the original values of µ, η and α and accordingly a more precise estimate of D
are possible. The right panel of figure 2 shows the numerical and analytical
results for the full width of a 68% confidence interval, i.e. 2σ̂D for the analytical
curve and the difference between the 0.841- and 0.159-quantile of the numerical
distribution of D for a given observation period. The agreement between the
simulated and calculated standard errors is quite remarkable.
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Figure 2: Monte Carlo simulation for the number of days requiring adaptation
for different observation periods. Each data point in the right panel corresponds
to the width of the distribution on the left of 1,000 randomly generated driving
profiles.
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Figure 3: Estimated number of days requiring adaptation D̂ with 68% confidence
bands from the numerical simulation. Show is also the ’real’ value from the
underlying parameters.

Finally, we can use the standard error σ̂D to add confidence bands the estimate
for the number of days requiring adaptation D(L) from eq. (4). This is shown
in figure 3. Since the samples for the simulation are quite large (1,000 runs), the
numerical average is very early close to the real value. However, when using a
real driving profile, the underlying sample size to estimate an individual value for
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D is only one and we have to use the full error bars to account for the underlying
uncertainty of the estimate. Please note that the width of the 68% confidence
interval is smaller than the estimated number of days, i.e. the signal to noise
ratio is smaller than unity, after five to six weeks.

3.2 Annual Vehicle Kilometres Travelled

Using the same parameters as in the previous section, i.e. µ = 3.43, σ = 1.20
and α = 5/7, we simulated 1,000 driving profiles for fixed observation period and
estimated R for each driving profile. The distribution of estimated Rs for fixed
observation period is used to obtain a numerical R̂ and the difference between the
0.841- and 0.159-quantile is used as numerical approximation to 2σR. These are
then compared to the ”theoretical” values R̂ = 365 α̂ exp[µ̂+ σ̂2/2] and eq. (7).
We obtain R ≈ 16, 500km, σR ≈ 32, 500km/

√
N and σR/R ≈ 1.97/

√
N .

Numerical examples are stated in table 2.

N [days] 7 14 28 63 91 182 364
σ̂R [km] 12,290 8,690 6,150 4,100 3,400 2,400 1,700

σ̂R/R̂ 74.3% 52.6% 37.2% 24.8% 20.6% 14.6% 10.3%

Table 2: Numerical example for the precision of the estimated annual VKT in
terms of the standard error σ̂R and relative error σ̂R̂/R according to eq. (7).
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Figure 4: Comparison between estimated and simulated annual VKT for in-
creasing observation period. Shown are the estimated annual VKT with 68%
confidence interval (left panel), the simulated and estimated standard error σR

(middle panel) and the relative error σR/R (right panel, note the logarithmic
scales).

The numerical and analytical results are compared in figure 4. We observe
good overall agreement between the simulation results and the analytical es-
timates. However, the left panel of figure 4 indicates that annual VKT are
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systematically overestimated for short observation periods (up to five weeks), we
observed similar behaviour in different numerical runs.

4 Summary

We derived an estimate and standard error for the number of days with vehicles
kilometres travelled larger than a given threshold based on the assumption of
log-normal distributed daily VKT. The numerical results show the usefulness and
precision of the calculated estimates and precision. The precision of the estimated
driving range and number of days requiring adaptation increases quite slowly with
inverse square root of the number of observation days. If the observation period
is longer than four weeks, the width of an estimated 68% confidence interval is
smaller than the estimated number of days. Future research should compare the
results derived here to real world driving data as in [7] and find similar estimates
for gamma distributed daily VKT.
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Matlab Codes

1 % This program estimates the probability of rare long distance

2 % trips by assuming a log -normal distribution of individual

3 % daily vehicle kilometres travelled (DVKT) and estimates

4 % the parameters of the log -normal distribution from a finite

5 % sample of the vehicle ’s driving. This program is mainly

6 % intended to test the validity and goodness of the estimates.

7

8 %% Parameters

9 clear all;

10 % The "real" parameters mu and sigma:

11 mu = 3.43; sig = 1.20;

12 % Parameters of observation

13 obsdays = 14; % integer multiples of 7 required: 7, 14, 21, etc

14 range = 150; % example electric driving range in km

15 daysreal = 5/7*365*(1 - logncdf(range ,mu ,sig)); % exact value

16

17 % number of Monte Carlo/bootstrap simulation runs

18 bstr = 1000;

19

20 %% BOOTSTRAPPING DRIVERS

21 mus = zeros(bstr ,1);

22 sigs = zeros(bstr ,1);

23 drivdays = binornd(obsdays ,5/7,bstr ,1);

24 for ll = 1:bstr

25 % suppose we draw data from the distribution

26 data=lognrnd(mu ,sig ,drivdays(ll) ,1);

27 % estimate parameters:

28 muhat = mean(log(data));

29 sighat= std(log(data));

30 %save values

31 mus(ll) = muhat;

32 sigs(ll)=sighat;

33 end

34

35 % Collect estimated number of days requiring adaptation

36 days = drivdays/obsdays *365.*(1 - logncdf(range ,mus ,sigs));

37

38 %% plotting

39 figure (1); clf;

40 numbins = 20;

41 subplot (2,2,1);

42 [n, x] = hist(mus ,numbins); n = n/sum(n);

43 bar(x,n,0.8,’c’);

44 subplot (2,2,2);

45 [n, x] = hist(sigs ,numbins); n = n/sum(n);

46 bar(x,n,0.8,’c’);

47 subplot (2,2,3);

48 [n,x] = hist(days ,numbins); n = n/sum(n);

49 bar(x,n,0.8,’c’);

50 subplot (2,2,4);

51 plot(mus ,drivdays ,’+’);

52 xlabel(’\mu’);ylabel(’driving days’);

53 [rho , pval] = corr(mus ,drivdays);

54 title([’p-value for corr. <> 0: ’...

55 ,num2str(pval *100,’%2.0f’),’%’])

56

57 disp(’estimate number of days with 95% confidence interval:’)

58 disp([’D = ’, num2str(mean(days),’%3.1f’),’ \pm ’ ,...

59 num2str (1.96* std(days)/sqrt(bstr),’%3.2f’) ,...
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60 ’ vs. D = ’,num2str(daysreal ,’%3.1f’)])

61

62 %% Confidence bands

63 % Plot number of days (estimated & ’real ’) vs. electric range

64 ranges = 50:5:400;

65 % need matrices for simple syntax:

66 daysreal = 6/7*365*(1 - logncdf(ranges ,mu ,sig));

67 mumat = mus*ones(1,length(ranges));

68 sigmat = sigs*ones(1,length(ranges));

69 daysmat = drivdays*ones(1,length(ranges));

70 rangemat = ones(length(mus) ,1)*ranges;

71

72 % compute matrix of days requiring adaption:

73 daysmat = daysmat/obsdays .*365.*(1 - logncdf(rangemat ,mumat ,sigmat));

74

75 % collect statistics:

76 daystat = quantile(daysmat ,[0.25 0.5 0.75] ,1);

77 daysmean = mean(daysmat ,1);

78

79 % plot estimated number of long distance trips and ’real ’ values

80 figure (2); clf;

81 plot(ranges ,daystat (1,:),’--’,ranges ,daystat (2,:),’b-’,ranges ,daystat

(3,:),’b--’); hold on;

82 plot(ranges ,daysmean ,’k--’,ranges ,daysreal ,’r-’,’LineWidth ’ ,2); hold off

;

83 legend(’1st quartile ’,’median ’,’3rd quartile ’,’mean’,’real value ’)

84 axis ([0 400 0 80]); grid on;

85 xlabel(’electric range [km]’)

86 ylabel(’days in year requiring adaption ’)

87

88 %% BOOTSTRAPPING OBSERVATION PERIOD

89 weeks = 1:52;

90 mus = zeros(bstr ,max(weeks));

91 sigs = zeros(bstr ,max(weeks));

92 drivdays = zeros(bstr ,max(weeks));

93 obsdays = ones(bstr ,max(weeks));

94 for w = weeks

95 obsdays(:,w) = 7*w;

96 drivdays(:,w) = binornd(obsdays(:,w) ,5/7,bstr ,1);

97 for ll = 1:bstr

98 % suppose we draw data from the distribution

99 data=lognrnd(mu,sig ,drivdays(ll ,w) ,1);

100 % estimate parameters:

101 muhat = mean(log(data));

102 sighat= std(log(data));

103 %save values

104 mus(ll,w) = muhat;

105 sigs(ll ,w)=sighat;

106 end

107 end

108

109 days = drivdays ./ obsdays *365.*(1 - logncdf(range ,mus ,sigs));

110 days1 = mean(days ,1); days2 = mean(days ,2);

111 quant = quantile(days ,[1/6 0.5 5/6] ,1);

112 iqr = quant (3,:)-quant (1,:);

113

114 %% plotting the error sigma_D

115 figure (3); clf;

116 subplot (2,4,1); hist(days (:,1));

117 subplot (2,4,2); hist(days (:,4));

118 subplot (2,4,5); hist(days (:,12));

119 subplot (2,4,6); hist(days (:,52));



How to estimate the probability of rare long-distance trips 13

120 subplot (2,4,[3 4 7 8]);

121 F = logncdf(range ,mu ,sig);

122 f = lognpdf(range ,mu ,sig);

123 p = 5/7;

124 % compute estimated error

125 factor = (1-F)^2*(1 -p)+...

126 (range*f*sig).^2*(1+(( log(range)-mu)./( sqrt (2)*sig)).^2);

127 theory = 2*365* sqrt(p./(7* weeks))*sqrt(factor);

128 plot (7*weeks ,iqr ,’o’ ,7*weeks ,theory ,’r--’);

129 xlabel(’observation period N [days]’);

130 ylabel(’ 2 \sigma_D [days]’);

131

132 %% plotting the mean with confidence band

133 figure (4); clf;

134 est = quant (2,:);

135 up= est+iqr/2;

136 low=est -iqr/2;

137 errorbar (7*weeks ,est ,est -low ,est -up ,’o’); hold on;

138 D0 = 5/7*365*(1 - logncdf(range ,mu,sig));

139 plot (7*weeks ,D0*ones(1,max(weeks)),’r-’);

140 hold off;

141 xlabel(’observation period N [days]’);

142 ylabel(’ D \pm \sigma_D [days]’);

143 axis ([0 380 0 50]);

144 legend(’simulation ’,’real value ’)

145

146 %% plotting the error in VKT sigma_R/R

147 % annual VKT

148 Rnum = mean (365*p*exp(mus+sigs .^2/2) ,1);

149 Rhat = 365*p*exp(mu+sig ^2/2);

150 % Standard error annual VKT

151 qR = quantile (365*p*exp(mus+sigs .^2/2) ,[normcdf (-1,0,1) 0.5 normcdf (+1,0,1)

],1);

152 sigmaRnum = (qR(3,:)-qR(1,:))/2;

153 sigmaRhat = Rhat./sqrt(p*7* weeks)*sqrt(1-p+sig ^2+ sig ^4/2);

154

155 figure (5); clf;

156 subplot (1,3,1)

157 errorbar (7*weeks ,Rnum /1000, sigmaRnum /1000 , sigmaRnum /1000,’o’); hold on;

158 plot (7*weeks ,Rhat /1000* ones(1,length(weeks)),’r--’,’LineWidth ’ ,2); hold

off;

159 xlabel(’observation period N [days]’);

160 ylabel(’Annual VKT R \pm \sigma_R [1,000 km]’);

161

162

163 subplot (1,3,2)

164 plot (7*weeks ,sigmaRnum ,’o’ ,7*weeks ,sigmaRhat ,’r--’,’LineWidth ’ ,2);

165 xlabel(’observation period N [days]’);

166 ylabel(’Standard error \sigma_R [km]’);

167 axis ([-10 380 0 13900]);

168 set(gca ,’Ytick ’ ,[0 2 4 6 8 10 12]*1 e3);

169 set(gca ,’YTicklabel ’,{’0’,’2,000’,’4,000’,’6,000’,’8,000’,’10,000’,’

12,000’})

170 legend(’simulation ’,’theory ’)

171

172 subplot (1,3,3)

173 loglog (7*weeks ,sigmaRnum ./Rnum ,’o’ ,...

174 7*weeks ,sigmaRhat ./Rhat ,’r--’,’LineWidth ’ ,2);

175 xlabel(’observation period N [days]’);

176 ylabel(’realtive error \sigma_R / R ’);

177 axis ([5 550 0.07 1]); grid on



 

 

 
 

Authors’ affiliations 

 

Patrick Plötz 

Fraunhofer Institute for Systems and Innovation Research (Fraunhofer ISI) 
Competence Center Energy Technology and Energy Systems 

 

 

 

 

 

Contact: Brigitte Kallfass 

Fraunhofer Institute for Systems 
and Innovation Research (Fraunhofer ISI) 
Breslauer Strasse 48 
76139 Karlsruhe 
Germany 
Phone: +49 / 721 / 6809-150 
Fax:  +49 / 721 / 6809-272 
E-Mail: brigitte.kallfass@isi.fraunhofer.de 
www.isi.fraunhofer.de 

 

 

 
Karlsruhe 2014 

 

  


