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Abstract: In this paper we discuss the application of the
Situation Prediction and Reaction Control (SPARC) con-
cept for fully automated driving, using variational trajec-
tory optimization to avoid static and dynamic obstacles in
a real urban traffic situation.
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1. Introduction

The Situation Prediction and Reaction Control (SPARC)
concept ([Zie12], [RZR*14b], cf. Fig. 2) aims to achieve
fully automated driving without the need for extensive dis-
cretization of states, both for the ego vehicle and for the
enviroment. Some advantages of the concept are:

» The ego vehicle remains in a constant internal state.
Discrete state transitions are not necessary, neither
are dedicated systems that manage different driving
tasks [UAB*08, BBF*08, MBB*08].

 The trajectory planning considers all modeled goals
at the same time, including:

— Safety (collision avoidance)

Legality (compliance with traffic rules)

Comfort (avoidance of high accelerations)

Ecology/economy (avoidance of inefficient ma-
neuvers and wearout)

Proximity to goal state

Thus, the final trajectory tries to satisfy all goals
based on their individual weights. In contrast, ap-
proaches that divide trajectory planning into several
steps (e.g. [MBB*08, KZP*08]) may often override
the achievements of the previous step through the
modifications of the subsequent one (cf. Fig. 1).
The trajectory planning is also fully flexible and
not restricted to maneuver primitives (such as left
turn, right turn, lane change, straight ahead, see
[UAB*08] for a more complex example).

» The way in which the predicted development of the
situation and other goals are considered together re-
sembles human decision making and should thus
lead to fully automated behavior that is still intuitive
for human traffic participants.

Figure 1: Problems arising from a two-step trajectory
computation. a: Collision avoidant, but impossible trajec-
tory. b: The same trajectory after smoothing—drivable,
but not collision avoidant anymore. c¢: A trajectory com-
puted by taking vehicle dynamics and obstacles into ac-
count at the same time.

+ Partial system failures can be covered by an emer-
gency mode that uses the best available knowledge
to bring the ego vehicle to a safe state. Again no
separate system is required.

Furthermore the approach explicitly trades off between
safety goals, such as collision avoidance, and secondary
goals, such as comfort and traffic rules. It requires a
weighting between the individual goals and thus an ex-
plicit assessment of the severity of undesirable states,
such as collisions, traffic rule infringements and uncom-
fortable accelerations, measured on the same scale.

It is important to realize that such a trade-off is a natural
part of human driving, and indeed inherent to travel in
general (in trading off the risks and gains of locomotion),
so it does seem prudent to take this decision explicitly on
quantitative grounds for fully automated driving.

2. The Situation Prediction

The situation prediction block uses a dynamic map of the
environment to produce a scalar or vector field p(x, y, f)
that maps space and time coordinates onto scalar or
vector valued pre-penalties. These pre-penalties can be
turned into actual penalties p € Ry if the ego vehicle
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Figure 2: Overview of the SPARC concept as introduced
in [RZR*14b]. A dynamic map of the environment (con-
taining both dynamic and static obstacles along with navi-
gation instructions and further priors such as traffic rules)
is passed to the situation prediction (SP) block. The SP
block computes a penalty field p (cf. Sec. 2) and passes
it on to the reaction control (RC) block (cf. Sec. 3), which
optimizes the trajectory and passes the very next control
commands to the ego vehicle.

plans to pass this particular coordinate along its trajec-
tory &(f) (see definition at [5]). The actual transformation
depends on the choice of p. As a simple example using
just one other vehicle c, the pre-penalties p.(x, y, t) may
store the probability p of ¢ reaching the position [x,y]T at
time t, along with the predicted speed v, that ¢ may at-
tain at [x, y,t]T. All impossible locations have p, = 0 and
undefined v,. For all places traversed by the ego vehicle
along a potential trajectory &, the penalty could be com-
puted as follows to be proportional to the expected value
of the kinetic energy of the impact (refer to [RZR* 14b] for
a discussion about the use of kinetic energy as a penalty):

VC
pC(X1y!t)=[pC] [1]
= po =P IVe — &P [2]

The advantage of using expected values for penalties is
that they are additive for independent events and can be
weighted by probabilities. The following section will de-
scribe how occupancy probabilities can be derived for ve-
hicles.

2.1 From Behavior Distributions to Position Distributions

Vehicle behavior is modeled in several independent steps
whose individual methods can be exchanged, provided
that the stochastic interpretation is maintained. Figure 3
gives an overview of the distributions that are used in the
SPARC concept to determine the probability of an individ-
ual vehicle occupying a space/time cell at [x,y,t]T. The
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Figure 3: Distributions used to derive occupancy proba-
bilities in the SPARC concept.

following sections give a detailed account of the individual
distributions.

Action Distributions and Bayesian Nets: The first distri-
bution is denoted p(ult) and describes the probability of
the vehicle driver applying certain actions u at time t. Ac-
tions can refer to low-level control commands, such as
braking, accelerating or steering, or to more abstract ma-
neuvers such as lane changes. There are many possible
methods for defining this distribution, depending on the
amount of prior information and live sensor data that is
available. We propose a Bayesian network over the traffic
participants, where the behavior of a vehicle ¢ is modeled
depending on vehicles

+ that ¢ can observe without using rear-view mirrors
and

« that are directly in front of ¢ or on one of the two
neighboring lanes (if applicable) or

« that have the right of way at an intersection or round-
about

while for example disregarding the influence of any car
that is behind c. This is clearly a simplification, however
it allows to reduce the complexity of a traffic situation sig-
nificantly through a simple set of rules. The advantage
is that the behavioral dependencies can be learned in a
large variety of training samples, since these topological
assumptions are not very restrictive. Furthermore long-
distance dependencies will emerge (for example a long



chain of vehicles braking one after another because the
foremost vehicle has to stop at a red traffic light), yet only
dependencies on direct neighbors must be modeled.
Figure 4 gives an example of such a Bayesian network. D
tries to merge into regular traffic. The intended maneuver
is clear, only the timing is open. The network models a
dependency on the actions of B, but as long as B keeps
the distance, D will be assumed to merge (by model as-
sumptions independently of E, since E is behind D). E will
react to the merge by either braking (triggering a brake of
F) or changing lanes. The latter option is significant for the
ego vehicle’s behavior. The occupancy probability in front
of the ego vehicle increases due to the anticipated behav-
ior of F. The effect of C on D is disregarded because they
are not on neighboring lanes. However, long distance ef-
fects are modeled such that indirectly, the behavior of A
possibly even influences G. The ego vehicle only affects
the behavior of G—all other cars are not expected to be
aware of the ego vehicle.

In most cases the maneuvers of vehicles are limited to
certain discrete tracks &, which are a function mapping
arc length (or any other suitable parameter) to space co-
ordinates,

EismE. 8] 3]

Tracks &(s) (which are just space curves independent of
time, such as lanes in a map), relate to trajectories &(t)
(which are space/time curves for specific vehicles) via
&(t) :=&(s(t)). If a vehicle is known to be limited to a given
track, its timing s(t) is still uncertain. To derive this timing
from the action distribution, stochastic differential equa-
tions [Pks03, All07] would yield sound models, which are
however in general difficult to compute.

Longitudinal Distribution: The approach proposed in
[RZR*14b] is to approximate speed and position distri-
butions by a Kumaraswamy distribution [Kum80] (similar
to the more well-known beta distribution, e.g. [Bul79]) to
speed up computation, since the Kumaraswamy distribu-
tion CDF can be computed exclusively by additions and
multiplications for integral shape parameters a and b:

0 x<0
X~K(ab)=pX<x)={1-(1-x3)° xe[0,1] [4]
1 x>1

The shape parameters a and b can be determined to best
represent the uncertainty about the future behavior (e.g.
increase the probability for braking or accelerating and in-
creasing or decreasing the confidence in this prediction).
The Kumaraswamy distribution can then be used to rep-
resent the “diffusion” of a vehicle’s longitudinal position
due to a probability density for accelerations and brakes.
The Kumaraswamy distribution is defined on a double-
bounded interval, so the locations where the vehicle c is
expected to be found in the future is limited (for example
by its maximum speed).

Spatial Distribution for a Single Track: The longitudinal
probability distribution p(s|t) can directly be turned into a
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Figure 4: Dependencies as a Bayesian network between
vehicles in a merge situation.

spatial (trajectory) distribution via &(s(t)) and by expand-
ing this positional density of the vehicle’s origin to its full
footprint (i.e. the bounding box or shape of the vehicle
aligned tangentially to £(s)). This step may also take into
consideration uncertainty about the current position or
shape of the vehicle ¢ (e.g. due to limited sensor data).

Track Distribution for Track Forking: If several tracks §2
are possible for vehicle ¢ (e.g. several exits of a round-
about, cf. Fig. 5, referred to as track forking), a discrete
distribution describing the probabilities of each track is
required. This may be a uniform distribution if no prior
knowledge exists. Criteria for offline priors (to be as-
signed to certain intersection exits and, e.g., stored in
maps), as exemplified in Fig. 5, include:

« GIs data to determine the relevance of roads from
their destinations and intersections

» Navigation map data to determine the relevance of
roads from their type

+ Actual statistical data gathered at important intersec-
tions (for example from traffic surveillance cameras
or Car2Car communication)

Live priors that can be observed in an actual scene and
be assigned to individual traffic participants would be:

e Turn indicators
» Choice of lanes

» Dynamic behavior, such as slowing down for a high-
way exit

The combination of both offline and live priors can lead to
a distribution p(/) for all £, that are available to ¢ (equiva-
lently written p(€) in Fig. 3).

Spatial Distribution for a Track Forking: If the tracks §2
are mutually exclusive (i.e. no track &, is fully contained
in any track &, for i = j), the occupancy probabilities can
be multiplied p(i/) using Bayes’ theorem. The resulting
probabilities can be used to obtain expected penalties by
multiplication and addition as exemplified in [2].
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Figure 5: Example of the prediction for a single vehicle
about to enter a roundabout (vertical axis is time, same
scenario as used in Sec. 4 and Figs. 7 and 8 but from a
different perspective). Due to the uncertainty about which
exit the vehicle will take, several exits are possible and
can be weighted depending on prior information, such
as provided by GIS or navigation map analysis. Without
proper data, a uniform distribution can always be applied.

2.2 Further Penalty Types

The penalty types discussed thus far only directly relate to
collision probabilities with other cars. There are other en-
vironmental influences that need to be modeled, although
not shown in this paper. These include:

» Models for pedestrian behavior, such as social force
models [LTR12], or a simple Irwin—Hall distribution
[GKP12].

* Models for traffic rules and road conditions, which
can be divided into:

— Static traffic rules and conditions, such as
speed limits, traffic lights, speed bumps, slip-
pery roads, no-passing lines or lanes and legal
flow directions in general. These rules can be
determined from an offline map and/or sensor
input about static objects.

— Dynamic traffic rules, such as precedence
rules, overtaking rules, safety margins. These
rules relate to the previously discussed oc-
cupancy probabilities, since the future where-
abouts of a traffic participant determine
whether these rules apply and how.

2.3 General Remarks about the Situation Prediction

The Situation Prediction is a general model to follow the
above principles. First of all, do note that it is not neces-
sary or suggested to computed penalties for the entire ob-
servable space/time volume. On the contrary, only penal-
ties relevant to the trajectory optimization (discussed in

the following Section 3) need to be computed. The num-
ber of computations depend on the chosen spatial and
temporal resolution, and on the optimization method for
the Reaction Control. Global methods can be applied to
find initial values for iterative, local methods, but for the
former, a low resolution evaluation is suggested.
Furthermore, the methods proposed here were chosen
for a beneficial trade-off between computational effort and
expressiveness. In general the modularity of the ap-
proach allows to replace any individual method or any
group of methods by different ones. It is suggested that
the stochastic interpretation be retained, since a stochas-
tic model allows to make clear statements about the as-
sumptions and limitations of the model. This feature is
generally not available for purely heuristic methods, and
considered vitally important to assess the applicability of
a model and its parameters.

3. The Reaction Control

A trajectory & is defined as a space curve that maps time
onto R? spatial coordinates (cf. [3]):

£t [SX] [5]

The trajectory can be interpreted as a curve through
space and time by considering the point [£,(t), &(f), a7,
which will be the usual visualization in this paper. Figure 6
shows a visualization of the Situation Prediction output p
along with such a 3D trajectory.

A penalty functional P assigns penalties to trajectories &
based on p, as well as on local trajectory properties that
can be expressed in terms of the first few derivatives (in
the case of this paper, up to &):

PIE|p] =_f dt p&,&,&|p) (6]

t

The penalty function or Lagrangian p(&,&,&|p) > 0 evalu-
ates the local penalties based on various properties. The
properties used in this paper (also cf. [RZR*14a)) are:

« Collision risks at locations &(t), cf. Section 2, referred
to as primary outer penalties o, ;.

« Speeds ||(1)|| that exceed the local speed limit or are
significantly lower (part of the inner penalties o, that
do not depend on the SP block).

« Accelerations ||€()|| (isotropic in this paper, although
for future work a distinction between longitudinal and
lateral accelerations is suggested; part of p;, as
well).

Absent from the discussions in this paper are the sec-
ondary outer penalties p/,, which relate to the Situation
Prediction results but not to collision risks (for example lo-
calized traffic rules). They are part of the general model

but set to zero for the practical applications in this paper.
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Figure 6: Visualization of the SPARC concept. (a) represents occupancy probabilities (white < high probability) of objects
at several time steps. It can be seen that the other car is predicted to drive ahead, but its timing is “blurred” by the
Kumaraswamy distribution. The pedestrians have no known track to follow, so their occupancy probabilities diffuse into
all directions. Static objects, as the traffic island, remain the same over all time steps and are blurred only due to sensor
uncertainty. (d) represents a trajectory planned by the ego vehicle following given waypoints. The penalties enclosed
in the footprint (green) along the trajectory are summed and contribute to the total expected penalty of this particular
trajectory. (b) and (c) represent traffic rules and navigation instructions that effect the choice of waypoints and influence

the total penalty (not part of this paper).

A trajectory & between two points x, = &(f,) and xg =
&(t.) is called stationary with respect to a given functional
P iff

p_d3p o Jp

Eae

= 5P
g*

where [7] is called the Euler—Lagrange equation, that acts
as a gradient to optimize the trajectory in a given func-
tional. As this classical definition assumes fixed end-
points, it is as such not suitable for the task at hand, since
it is not always desirable to force the arrival at the target
position. If the goal position is located such that it can only
be achieved at high risk, it should be avoided (such as
crossing a busy intersection instead of waiting for a gap,
or finding that another vehicle already occupies the target
position itself). The following additional terms, known as
natural boundary conditions, allow a flexible endpoint and
assure, that the solution &* is stationary also with respect

to its position.

d dp
=0 ——| =0 8
ts dt g& | 18]

e

ap
ok

o %P
b 23

Flexible endpoints introduce the need for an additional
penalty inside p, namely piarger, Which penalizes devia-
tions from the target point—if such a penalty were not
introduced, the safest solution would (usually) be not to
move the car at all.

Beside this generalization, the Euler—Lagrange solution
must also be constrained to assure that the obtained tra-
jectory can be achieved by the vehicle. The following con-
straints on steering angles 6, velocities v and accelera-
tions a are proposed (see [RZR*14a] for a derivation of
vehicle parameters from given trajectories):

5 = arctan (ic - b) € [~Spmax +Srmaxl [9]



(Where « = det[&,&] - ||€]|=8 is the local curvature and b is
the wheel base of the car)

(£1£)

=+ L& ! 0, Vmax 10
v H Il € [0, Vimax] [10]
a=@=\7€![a. a ] [11]

||£|| mins “max

3.1 Structure of the Penalty Function

The penalty function p in this paper is structured in the
following way:

PE.E.EIP,Xe) = Pin(E.E.E)
+ Pout€lP)
+ PoutElP)
+ Prarget (€ (1)|Xe) - 5(t- te)

where 4(t) denotes the Dirac impulse function, used to
switch on piarget €Xclusively at f, such that its value is
added to P. It should be noted that the Dirac delta trans-
forms into a well-defined, finite value through the dis-
cretization of &(t) over time in the optimization.
The solution thus has the following properties:

[12]

« |t starts from a given point xy, (hard constraint)

« It leads towards the vicinity of an intended end point
X, (soft goal)

« |t is stationary with respect to the penalty functional
P (in particular considering the pre-penalties p, hard
constraint)

« It exclusively uses steering angles, velocities and ac-
celerations from given, physically possible intervals
(hard constraint)

A solution to satisfy the above criteria can be obtained
using sequential linear or quadratic programming [NWO06,
GKO02] (sLP, sQP) since both P and the constraints [9],
[10] and [11] are twice continuously differentiable (assum-
ing o, to be numerically differentiable). A remaining
problem is the convergence towards purely local minima;
a well-chosen set of several initial trajectories is assumed
to resolve this problem for practical applications, however
no conclusive evaluation has been performed. The appli-
cation in Section 4 starts out from a single initial trajectory
that is the constant speed connection between x, and x,.
For all timesteps t > 0 the previously optimized trajectory
is reused.

4. Application

The algorithm is applied to a real-world roundabout sce-
nario (see Figs. 7 and 8 along with these explanations) to
demonstrate the process and discuss the individual steps
on a practical example.

4.1 Setup, Data and Parameters

A video of approximately 10 seconds was recorded using
a GoPro Hero 1 attached to the windscreen of the ego
vehicle. There are three cars visible in the scene, labeled
I, I and Il (according to the order in which they entered
the roundabout). In the frames, the car positions were
manually detected and projected onto a detailed map of
the scene. The prediction of occupancy probabilities was
performed by using the current speed of the car as the
mode for the Kumaraswamy distribution, and the forking
at each exit was computed based on the prior distribution
demonstrated in Fig. 5. Figure 7 shows the full predicted
occupancy probabilities of the scene up to 20 seconds
into the future, to convey an intuition for their distribu-
tion over space and time. Figure 8 shows an extract of
the same occupancy probabilities along the given track &
for the ego vehicle. Only these occupancy probabilities
are relevant for the computation of the optimal trajectory;
all others need not be computed explicitly. Furthermore,
Fig. 8 shows the trajectory that is planned along this track
by the ego vehicle at every time step.

4.2 Discussion of the Individual Steps

Due to the fact that the ego vehicle started at rest and
had 20 seconds as an initial time to reach the goal xe,
the algorithm converged to a solution that waited for all
the traffic participants to pass before entering the round-
about. Had the ego vehicle started at 50 km/h, the ob-
tained solution would enter the roundabout immediately.
From its position, vehicle | is predicted with certainty to
leave the roundabout at the next exit. Vehicle Il has sev-
eral possible exits to choose from, so does lll, who has
not reached the roundabout yet. Track forking is weighted
in accordance with Fig. 5. The assumption that a vehi-
cle would not return to its entry point (or perform several
circles in the roundabout) is merely introduced to better
demonstrate the principles; it is not required in any way,
nor is it actually suggested, since it may be dangerous in
practice.

At t = 4, vehicle Il is observed to leave the roundabout;
Figure 7 clearly shows that the left fork of the prediction
disappears and instead all the weight is assigned to the
exit fork.

Similarly, at t = 5, vehicle lll passes an exit and the weight
is assigned to the two remaining exits. This leads to an
increased collision risk directly in front of the ego vehicle,
since lll is more likely to pass before it.

At t =7, lll passes the next exit and is now known to pass
before the ego vehicle, again increasing the collision risk
ahead of it, and removing the last fork from its prediction.
The remaining uncertainty for the occupancy of lll exclu-
sively relates to its longitudinal behavior (modeled by the
Kumaraswamy distribution, leading to the increased blur
over time) and the sensor accuracy (leading to a slightly
unsharp outline of the “cloud” in space.

After t = 9, when lll is past the ego vehicles ramp, the
ego vehicle starts to follow it at roughly the same pace. It
should be noted that the planned distance from the most
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Figure 7: The first image shows the empty roundabout, along with a map of the scene stating the vehicle designations
used in the explanations, and the track & for the ego vehicle (green). The other images show the summed occupancy
probabilities p stored in p of the scene at each time step, along with the corresponding dash cam stills for reference. (Cf.
Fig. 8.)



Figure 7: (Continued from previous page.)



Figure 8: Extracts from p along the given track for the ego vehicle. The top row shows the extracts of p cut out along the
ego vehicle’s given track along with the optimized trajectory (green). The horizontal axis is track progress; the vertical axis
shows predictions in seconds at a finer-than-usual sampling for demonstration purposes. The predicted occupancy proba-
bilities can be seen to become increasingly blurred at more distant prediction times. The bottom row shows corresponding

overviews of p.

likely predicted position of lll (the mode of the “cloud”)
increases because the uncertainty about the position in-
creases. The algorithm thus plans for the case the lll
might proceed slower than predicted. Should this not be
the case, future planning steps would increase the speed
to keep a constant distance at all times.

Current Optimum and Fail-Safe Solution: This indicates
a particular feature of the SPARC concept, namely that the
planned trajectory is supposed to be optimal, given the
modeled goals, the model assumptions and the current
knowledge, not strictly requiring that re-planning will be
possible. In case of a partial system failure, a trajectory
planned in this way according to the current knowledge
should be the optimal way to “spend” or bridge the next
(e.g.) 20 seconds. The only aspect that would likely not
be desirable is heading for x., unless the system failure
would be known to be resolved before the planned time
horizon is used up. The reason is that x, likely lies amid
flowing traffic and is thus an unsafe location to reach in a
disabled state.

It is suggested to always identify a safe and close loca-
tion Xemergency t0 bring the car to a stop (for example the
road shoulder) and plan an emergency trajectory to reach
this point, along with the required control commands to
perform this trajectory (refer to [RZR*14a] for a prelimi-
nary assessment of offline trajectory planning). Should
all sensors, the Situation Prediction and/or the Reaction
Control fail, this backup set of control commands could be
automatically passed to the actuators to reach Xemergency
safely before the predicted time interval runs out.

5. Conclusions and Outlook

As with [RZR*14b], the application of the SPARC concept
to individual scenarios yields promising results both in
terms of the obtained trajectories for the ego vehicle and

for the computational effort. While as of now, no strict
optimization of the underlying algorithms was attempted,
it is clear that the approach presents a high degree of
parallelism and a major part of the mathematical models
reduces to multiplications, sums and combined multiply-
accumulate operations, for which efficient hardware im-
plementations exist.

The main challenges currently represent the lack of real
world data to provide parameters for the applied probabil-
ity distributions, to test the applicability of models to ac-
tual traffic scenarios, and to automatically evaluate the
approach using a large database of real-world scenarios.
The creation of such a database will be a relevant step to
validate the approach and thus represents urgent future
work.

Similarly, the results obtained in [RZR*14a] have been
used at several places in this work, even though they
also currently await validation using real-world measured
data. This applies in particular to the emergency trajec-
tory planning indicated in the previous section.

It can be concluded that the SPARC concept shows poten-
tial to cope with complex traffic situations and take various
kinds of uncertainty into consideration, in a fashion that
closely resembles human behavior and planning strate-
gies. The advantages lie in the transparent choice of as-
sumptions and, in particular, a transparent trade-off be-
tween conflicting goals, such as safety, comfort and pace.
The risks that are tolerated to reach these goals can be
chosen deliberately—defining the weights that trade off
between safety and secondary goals is certainly difficult
and expressly far beyond the scope of this paper, but it
is assumed that once such a trade-off is technologically
feasible, it should be made explicit.
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